
I M P R O V I N G S E C U R I T Y
A C R O S S T H E S O F T WA R E

D E V E L O P M E N T
L I F E C Y C L E

T A S K F O R C E R E P O R T
A P R I L 1 , 2 0 0 4

i

TABLE OF CONTENTS

Task Force Executive Summary ..1

Education Subgroup Summary ..3

Software Process Subgroup Summary...6

Patch Management Subgroup Summary..8

Incentives Subgroup Summary ..11

Conclusions..13

S U B G R O U P R E P O R T S

Education APPENDIX A...A-1

Software Process APPENDIX B ...B-1

Patch Management APPENDIX C ..C-1

Incentives APPENDIX D ..D-1

Recommendations For Future Consideration APPENDIX EE-1

1

EXECUTIVE SUMMARY

OVERVIEW

At its core, the value of software is derived not only from its ability to increase
productivity and efficiencies, but also from its resiliency to attack and always
performing at needed levels during times of both crisis and normal operations. This
task force’s central thrust is towards establishing a world with robust software security,
where users continue to benefit from software innovations. This is not an easy
challenge and will take the persistent, combined efforts of industry, academia,
government and others to make long-term progress. Only by increasing security-
oriented efforts throughout the software development lifecycle can we achieve this key
component of the President’s National Strategy to Secure Cyberspace.

THE PROBLEM

Security is a serious problem and, if present trends continue, could be much worse in
the future. No simple silver bullets will solve the software security problem. As a long-
term multifaceted problem, it requires multiple solutions and the application of
resources throughout the lifecycle. Improving software security and safeguarding the
IT infrastructure is a research and education issue for universities; a skill, process, and
incentives issue for producers; a requirements issue for customers; a quality and testing
issue for providers; a maintenance and patching issue for IT administrators; an ease-of
use issue for users; a configuration issue for installers; and an enforcement issue for
governments.

THE TASK FORCE

This task force has been hard at work looking at ways to enhance software security
efforts across the lifecycle under the leadership of its co-chairs Ron Moritz of Computer
Associates, and Scott Charney of Microsoft. The task force’s recommendations are a
product of 4 smaller subgroups that parallel the multiple layers of the development
lifecycle.

Together these sub-groups have found that increasing software security involves:

• enhancing the education and training of present and future developers to put
security at the heart of software design and at the foundation of the
development process [Education Subgroup];

• developing, sharing, and skillfully using processes and practices to improve
the quality and security of software, so that systems are more resilient to
attack [Software Process Subgroup];

• developing incentives that can create a culture of security awareness, and
disincentives for malicious behavior [Incentives Subgroup];

• making the patching process simple, easy, and reliable [Patching Subgroup];

2

The task force as a whole also found that supporting basic research can increase the
security and reliability of the software code produced.

Ensuring security is an ongoing process - requiring ongoing threat analysis, product
improvements and performance evaluation. As a result, this task force has one of the
toughest challenges. To have meaningful long-term impact, security must be at the
heart of the software specification, design, and implementation process and the
software products used for critical infrastructures.

ABOUT THE TASK FORCE

The Security Across the Software Development Lifecycle Task Force is a diverse
coalition made up of interested security experts from the public and private sectors
created as part of the National Cyber Security Summit process. Task Force Members
include representatives from academia, trade associations, non-profit organizations,
publicly traded and privately held companies, and federal government employees.
Task Force members participated voluntarily, donated their time, and were not paid for
their participation. The Task Force is not an advisory group to the Department of
Homeland Security or any other federal government department or agency. Instead,
the Task Force operates under the guidance and coordination of the National Cyber
Security Partnership, the coalition of trade associations, including the U.S Chamber of
Commerce, the Information Technlology Association of America, TechNet and the
Business Software Alliance, that sponsored and organized the National Cyber Security
Summit held in Santa Clara, California on December 2-3, 2003.

The task force has assembled a number of important ideas and recommendations.
These issues are complicated and the presentation of a recommendation is not meant to
suggest that it was unanimously agreed upon; indeed, there may even be strong
dissenting views. In the end, the task force thought it was important to
include these proposed recommendations in order to help inform policymakers and
inspire new thinking, even if consensus could not be reached. Therefore,
recommendations should not be attributed to, or assumed to be accepted by, any
particular industry, association, or academic segment, or any particular member of the
Task Force.

3

EDUCATION SUBGROUP SUMMARY

OVERVIEW

The lack of adequate education in software security for software developers has cost the
United States dearly. Whether it is the tens of billions of dollars per year in losses
sustained from software security flaws, the tens of billions of dollars per year in patch
management costs for critical security-related patches, or the offshoring of software
industry jobs to better educated programmers from across the world, the costs will only
continue to rise until this educational need is addressed at a national level.

Creating secure software begins with effective education of present and future software
developers to put security at the heart of software design and at the foundation of the
development process. Without state-of-the-art knowledge, incentive structure, research
support, and educational commitment, developers will not create the secure software
systems that our economy demands and our security requires. While training is often
suggested as a partial and short-term solution to the software security issue, the extent
to which in-service software workers were educated without security components or
never educated in software development at all makes a training approach almost
certain to be ineffective. Education is needed to change the way people think about
software from the core of how to write simple programs to the intricacies of complex
interdependencies that are so critical to infrastructure systems. If the United States is to
progress beyond immature infrastructures created by amateurs, professionalism based
on a sound university education is required.

If higher educational institutions are to be successfully engaged in meeting the national
needs, the faculty must be fully engaged in the process. To date, academia's role in
provisioning industry for secure software development has not been funded to support
the level of need. Educational support grants and research funding at universities in
this area has not been adequate to sustain even a single full time professor with related
expertise in each state. Compared to areas such as computer graphics, analysis of
algorithms, distributed computing paradigms, or simulation, the software security-
related budgets are and have been relatively minuscule. While cryptographic research
has received large scale funding across the globe for many years, software security
research funding, which is also critical for the proper operation of cryptographic
systems, is almost non-existent. While many may think that universities anticipate
societal needs and internally fund professors until society comes to recognize those
needs, this is simply not the case. It should hardly be a surprise then to learn that little
progress has been made in this area and that academia has not independently sustained
information protection as a discipline and produced the next generation of future
software developers with a thorough understanding of security.

If educational institutions are to be successfully engaged in meeting the national needs,
the way they operate must be understood. Unlike grade schools, high schools, training

4

academies, industry, and government, which all have a more or less hierarchical
structure, institutes of higher education are run by the faculty. The faculty in higher
education does the lion's share of the decision-making, they create and implement the
curriculum, they lead the research efforts, they propose the grants, and they lead the
educational efforts. Academic accreditation of academic institutions is done by faculty
from other comparable institutions who send their faculty to observe the programs and
assure that they meet the standards set forth by national groups of faculty. Many of the
processes and instructional materials required for this effort will be based on the work
done in higher education.

In order to make progress in educating both in-service and new students, the national
agenda must meet the needs of educational institutions and their faculty. While training
the existing ranks of developers in secure software development may seem like a
rational approach at first glance, and may even make a small difference in the short run,
this approach will not succeed because of the depth to which these developers have
been undereducated over the last 30 years.

RECOMMENDATIONS

The Education Subgroup focused on present and future developers and recommends
that 1) security become a core component of software development programs at the
university level with sufficient resources to build the academic capacity to improve
secure software development, and 2) supports the creation of an industry, government,
education certificate program for IT professionals, and 3) supports improving security
through the enhancement of academic institutions. Specifically the group recommends:

• Create a new public-private effort to build the academic educational and research
capacity to improve secure software development. Critical components of such and
effort include:

-Provide for delivery of educational content on secure software development
over the Internet. This involves both the creation of Internet-based
educational materials and educating the educators in how to properly apply
the material to their classes and their students.

-Work toward requiring that all information technology and computer
science students meet curriculum standards associated with software
security and create national standards for computer science accreditation
that mandates the integration of security education into all aspects of
computer science and software-related programs. This includes the creation
of accreditation bodies appropriate to the need to provide acceptable and
enforceable standards for educational institutions.

-Develop educational material and capabilities that can be used across the
nation to educate new students and assist properly trained educators in
teaching the most critical material in this area.

-Gain ongoing support for this program from government and industry.

5

• Create Software Security Certification Accreditation Program. Support the creation
of a certification and accreditation program for increasing security in software
development.

• Ensure that Software Assurance and other Information Technology Centers of
Excellence include an information protection component.

6

SOFTWARE PROCESS SUBGROUP

OVERVIEW

The Software Process Subgroup looked at developing and sharing best practices to
improve the quality of software as well as the production processes so systems are more
resilient to attack. The Subgroup’s report defines a pathway that software producers
can follow for developing more secure software including practices. The report
includes recommendations for software producers, educators, and the Department of
Homeland Security (DHS) on how to follow a pathway towards more secure software.

Security is now a serious problem and, if present trends continue, the problem will be
much worse in the future. While security problems exist for many reasons, a primary
cause is that much of the software supporting the U.S. cyber infrastructure cannot
withstand security attacks. These attacks exploit vulnerabilities in software systems.

Software security vulnerabilities are often caused by defective specification, design, and
implementation. Unfortunately today, common development practices can often leave
numerous defects and resulting vulnerabilities in the complex artifact that is delivered
software. To have a secure U.S. cyber infrastructure, the supporting software must
contain few if any vulnerabilities. This requires that software be designed with security
at the very heart of the design process and have few if any specification, design or code
defects.

Developers should use processes that consistently produce secure software. This in
turn requires that development organizations acquire the high level of security
expertise required, identify processes for producing secure software, adopt them, and
consistently use them when they produce, enhance, maintain, and rework the software
that supports the U.S. cyber infrastructure.

No processes or practices have currently been shown to consistently produce secure
software. However, some available development practices are capable of substantially
improving the security of software systems including yielding exceptionally low defect
rates. Since introducing these methods requires significant training and discipline,
improving software security will take commitment, time and resources for achieving
the benefits outlined.

RECOMMENDATIONS

The recommendations focus on broadening use of the most promising existing practices
to develop low-defect, secure software, producing of definitive studies that compare the
relative effectiveness of available security practices, and working within the software
industry to achieve widespread use of effective security-oriented practices. A
comprehensive program is also needed to validate that candidate software
development processes consistently produce secure software and to verify that these
processes are properly used in producing software products.

7

Principal Short-term Recommendations
• Adopt software development processes that can measurably reduce software

specification, design and implementation defects.
• Software producers should adopt practices for developing secure software.
• Software producers, where appropriate, should conduct measured trials of

available approaches and publish their results.
• The Department of Homeland Security should support USCERT, IT-ISAC, or other

entities to work with software producers to determine the effectiveness of practices
that reduce software security vulnerabilities.

Principal Mid-term Recommendations
• Establish a security verification and validation program to evaluate different

software development processes and practices for effectiveness in producing
secure software.

• Industry and the DHS establish measurable annual security goals for the principal
components of the U.S. cyber infrastructure and track progress.

Principal Long-Term Recommendations
• Certify those processes demonstrated to be effective for producing secure

software.
• Broaden the research into and the teaching of secure software processes and

practices.

8

PATCH MANAGEMENT SUBGROUP

OVERVIEW

The patching subgroup has focused on defining steps that can be taken to enhance the
patching process in order to reduce complexity, increase its effectiveness, improve
reliability, and, ultimately, minimize costs and risk. Although the ultimate goal should
be the elimination of patches, this will only be attainable after the necessary steps are
taken to improve code quality overall. Other subgroups are focused on various aspects
of this issue and this subgroup is solely focused on identifying recommendations that
improve patch manageability. The subgroup is recommending long-term and short-
term strategies and actions that could be employed to enhance the patching process.
The Subgroup is also identifying strategies and incentives that might be employed to
obviate the need for patches.

Patches are not always delivered in a way that permits them to be introduced into the
environments of critical infrastructure providers in as safe and secure manner as
desired by users. A complex process of impact/risk evaluation, patch preparation and
testing, and deployment in a large, complex organization is not a simple endeavor.
Each patch must first be tested in the target environment to ensure compatibility with
the underlying hardware and software and to ensure that existing applications are not
compromised, and that the patch itself does not contain errors. Once tested, the
implementation process is often complex and may require a long time to apply because
it needs to be replicated across many servers and desktops, yet still needs to be
scheduled and staged to minimize operational impact.

Critical infrastructure companies do not always have a patch management process in
place to manage risk accordingly. The patch management process should include tasks
to assess the criticality of patches, assess the impact of applying or not applying a patch,
test the patches thoroughly, apply the patch in a controlled manner, and document the
patch assessment and decision process. This deficiency may be because users are
unaware of the need for patches, are not able to implement an effective process for
managing patches, or are unable or unwilling to maintain technology products at
current release levels. This Subgroup acknowledges the important work of the
corporate governance task force in helping to raise the importance of security, including
patching, to the senior management level.

RECOMMENDATIONS

The goal of the subgroup is to help make the patching process simple, easy, and
reliable. The subgroup identified and grouped specific recommendations for technology
providers, critical infrastructure providers and independent software vendors. The
subgroup recommends that these principles be adopted as an industry benchmark, and

9

additional efforts be initiated to define specific criteria for the principles, and establish
program that will encourage providers to adhere to them

The Subgroup’s recommendations for technology providers are the following:

• It is the recommendation of the Subgroup that the Guiding Principles
outlined in Appendix C be adopted as an industry benchmark, and additional
efforts initiated to define specific criteria for the principles, and build
programs that will encourage technology providers to adhere to them.

• Technology providers should develop patch development processes that
adhere to the Guiding Principles.

• Technology providers should include for each patch, where feasible,
alternative risk mitigation actions that can be taken by technology consumers
in lieu of patch deployment, and they should provide other relevant
information that could facilitate understanding of the risks and the risk
mitigation process to allow technology consumers to make more-informed
patch deployment decisions.

• Technology providers should enhance patch and vulnerability technical
publications to include more thorough analyses of the impact of
vulnerabilities on unpatched systems, the process utilized to thoroughly and
fully test patches, as well as data on the environments and applications for
which the patches were tested.

• DHS should develop an awareness campaign to highlight to technology
providers this issue and how it affects the ability of critical infrastructure
companies to provide secure and reliable services to their customers.

• DHS should establish a patch clearing house that provides an inventory of
patches, the platforms they have been evaluated against, and patch
compatibility with widely used applications.

• DHS should examine current industry practices as they relate to provision of
patches for unsupported releases of technology products to gain a better
understanding of the risks associated with use of unsupported software by
technology consumers in order to develop appropriate guidance on the issue.

The Subgroup’s recommendations for critical infrastructure providers are the
following:

• It is the recommendation of the Subgroup that critical infrastructure providers
adopt the Guding Principles outlined in Appendix C, and additional efforts
initiated to define specific criteria for the principles, and build programs that will
encourage critical infrastructure providers to adhere to them.

10

• DHS should develop and implement an awareness campaign to highlight to
critical infrastructure companies this issue and how it affects their ability to
provide secure services to their customers as well as the potential risk they pose
to the critical infrastructure components.

• DHS should establish guidelines and mechanisms that encourage critical
infrastructure companies to implement a process for patch management, such as
that defined in the FDIC guidelines for financial institutions.

• DHS should initiate an effort to examine options available to encourage critical
infrastructure companies to migrate to more current and more secure versions of
technology products. This effort should identify impediments to this process,
such as the use of third-party technology products that contain embedded
software that is outdated and incapable of being updated by the critical
infrastructure company, and make recommendations for remediation.

The subgroup’s recommendations for independent software vendors are the following:

• It is the recommendation of the Subgroup that the Guiding Principles outlined in
Appendix C be adopted by ISVs, and additional efforts initiated to define specific
criteria for the principles, and build programs that will encourage critical
infrastructure providers to adhere to them.

• DHS should develop and implement an awareness campaign to highlight to ISVs
this issue and how it affects their customers’ ability to provide secure services as
well as the potential risk they pose to the critical infrastructure components.

• DHS should initiate an effort to examine options available to encourage ISVs to
migrate their products to more current and more secure versions of technology
products.

11

INCENTIVES SUBGROUP SUMMARY

OVERVIEW

Incentives will play an important role in supporting the effort to make cyberspace more
secure. The Incentives Subgroup of the Software Development Life Cycle Task Force of
the National Cyber Security Summit has focused on identifying incentives that:

Motivate development of more secure software during every phase of software
development

Promote effective interaction between security researchers and software vendors

Demotivate malicious behavior by cyber criminals

To be successful in our efforts to improve the security of cyber space, we must educate
each person in the software industry about the direct impact they have on our collective
security. Proper incentives can help to develop ownership of the problem at both a
personal and corporate level.

The Incentives Subgroup has identified tangible incentives that will impact all aspects
of the software development lifecycle, from development, to deployment, and
maintenance. We also recommend Incentives for Security Researchers and
Disincentives for Cyber Criminals. While some of our recommendations will take time
to implement, several of our recommendations can be implemented in the short term
and have an immediate impact on overall cyber security.

The overall result of our work is presented in an ‘Incentives Framework’ that enables
policymakers, developers, companies and others to develop effective strategies and
incentives for making software more secure. Incorporated below are the components of
the Incentives Framework that we believe can be implemented in the relative short term
(within the next year). Further detail of these recommendations is provided in
Appendix D.

RECOMMENDATIONS

The Incentives Subgroup identifies incentives to motivate development of more secure
software, promote effective interaction between security researchers and software
vendors, as well as disincentives for malicious behavior and cyber criminals. The
‘Incentives Framework’ document outlines recommendations that policymakers,
developers, companies and others can adopt to develop effective strategies and
incentives for making software more secure. The subgroup’s recommendations include
the following:

12

• Make the security of one's software a job performance factor;

• Develop industry awards for secure software development practices and end
products;

• Create and actively distribute tools that illustrate secure software
development techniques;

• DHS/NCSD should examine whether tailored government action is
necessary to increase security across the software development lifecycle;

• Develop sample performance metrics for administrators/IT Departments
that encourage effective action;

• Develop a multi-company program offering rewards for information leading
to the conviction of cyber criminals;

• Track and measure, and then certify, effective development processes

• Create a program with government and industry support for Information
Assurance/Computer Security faculty that provides a grant or reward for
innovative educators in applicable fields for a fixed period of time;

• Create a National IT Security Certification Accreditation Program.

13

CONCLUSIONS

Overall, the task force outlines important steps forward in the long road toward
implementing key components of the National Strategy to Secure Cyberspace.
Establishing a lifecycle of robust security and ensuring that users continue to benefit
from software innovations are critical goals that require continued progress. The
challenges ahead cut across industries; governments and span the globe. While
improving research and education, both the software development process and the
patching processes will legitimately take time for the benefits to be achieved throughout
the software lifecycle. The benefits, however, are likely to be profound. Improving
security throughout the software lifecycle can further increase the already dramatic
economic and social benefits that software is already delivering.

A-1

Appendix A
Education Subgroup Report

Education Sub - Group Report and Recommendations

Overview:

The lack of adequate education in software security for software developers has cost the United
States dearly. Whether it is the tens of billions of dollars per year in losses sustained from
software security flaws, the tens of billions of dollars per year in patch management costs for
critical security-related patches, or the offshoring of software industry jobs to more able
programmers from across the world, the costs will only continue to rise until this educational
need is addressed at a national level. While many people in government and industry show some
level of disdain for universities, and academic points of view are often scorned, most of the best
workers in the United Stated and throughout the world went though university degree programs.
When people ask why the Unites States outsources software development work to India, the
answer is not just that there is a cost difference. The real difference is that for the last 30 years,
India has put forth a concerted effort to provide high quality university education in software
design to their young people. As a result, India produces programmers that make fewer errors per
line of software code than programmers trained in the United States.

Just as medical schools depend on people with medical degrees who practice medicine, do
research, and teach there to bring quality education to those who provide medical care,
universities depend on people with graduate degrees in relevant fields who also do research and
practice in those fields to bring quality software security education to those who design software.
Unfortunately, while doctors in medical schools are funded to research, work, and teach there,
many of those who research and teach software security in universities are not funded to do this
work. As a result, the United States doesn't have very many university programs with adequate
education in software security, and as a nation, we are unable to produce the practitioners we
need to build and operate the secure systems we need for our critical infrastructures. Few people
would accept medical treatment from practitioners who were originally economics graduates,
operated on people in their spare time, and went through a rapid training program to become
doctors. But as a nation, the United States has taken exactly this position with regard to
engineering software systems that run critical infrastructures upon which many lives depend.
While this report covers primarily the need for improved education in software assurance, the
national need extends far beyond this subfield of information protection. Some of these issues
are included here, even though they are outside of the limited recommendations associated with
education related to software assurance.

The strategy recommended in this report takes the fundamental approach that we need to build a
sustainable national capability to produce skilled workers with the necessary education to fulfill
the national need for information protection practitioners in the software arena. This approach
recognizes the need to fund these programs and the need to measure their success in quantifiable
terms. It also recognized the need to integrate industry knowledge and practice with theoretical
and research concerns. And it recognizes that the long distance the United States needs to go in
this arena cannot be crossed in a period of weeks, months, or even a few years. This strategic
approach starts by using experienced experts who are mid-career as the seed corn required to
produce an initial crop of skilled workers, and uses that seed corn to grow the new breed of
educators who will ultimately allow us to sustain this need into the future.

Background:

The costs associated with computer software security lapses are estimated to be in the tens of
billions of dollars per year. The GAO estimates the US losses to be about $38B while
Microsoft's tracking of virus incidents alone run in the range of $80B per year worldwide.
According to BITS, a survey of 100 financial services companies found they pay an estimated
$400 million annually combined to deal with software security and patch management issues.

But financial losses are not the only areas in which the lack of secure software is harming the
United States. Electronic voting machines, for example, yielded clearly fraudulent results in
recent elections and are being increasingly deployed, with the result being a threat to the body
politic of the United States. Outsourcing of information technology work, particularly in the
software arena, is increasingly resulting in control systems for critical infrastructures being
programmed by people from all over the world, some of whom have historically used this sort of
access to plant Trojan horse software in critical infrastructure control systems. The U.S. military
is critically dependent on information systems, including systems like the one that ran the U.S.S.
Yorktown when it was disabled by insecure software design. In short, the national security of
the United States depends critically on software security for its success.

Academia's role in provisioning industry for secure software development has never been funded
to any significant level. Educational support grants and research funding at universities in this
area has never been adequate to sustain even a single full time professor per state with related
expertise. Compared to areas such as computer graphics, analysis of algorithms, distributed
computing paradigms, or simulation, the software security-related budgets are and have always
been minuscule. While many may think that universities anticipate societal needs and internally
fund professors until society comes to recognize those needs, this is simply not the case. It
should hardly be a surprise then to learn that little progress has been made in this area and that
academia has not independently sustained information protection as a discipline.

In the broader picture, it must also be recognized that the United States is offshoring more and
more of its software development to India and other locations around the world. While many
people seem to think that this is simply a matter of being able to get less expensive labor in less
well developed countries, those who understand the software industry knows that this is simply
not true. The plain truth is that India has invested in computer-related fields their educational
system for the last 30 years. They have built institutions of higher education and funded those
who teach and research there, supported their students coming for advanced degrees in the
United States, and now produce programmers who write software with far fewer flaws per line of
code than the average software developer in the United States. The price of labor is certainly a
contributing factor, but the ability to produce better software more quickly is a far more
important factor. In a recent talk on global financial issues, Alan Greenspan hit the nail on the
head when he stated that the cure to offshoring is not protectionism – it is improving the
educational system in the United States.

As a direct result of this longstanding lack of funding for universities, which are the most cost
effective types of institutions ever found for research investments, the United States is sustaining
scores of billions of dollars in losses per year and forcing software developers to look elsewhere
for high quality software. While the Department of Homeland Security has no funding available

to help mitigate this situation, they have asked industry to consider solutions that can produce
dramatic changes in the educational situation in short periods of time (e.g., a few months).

It must, however, also be recognized, that the time required to educate people in security to the
point where they can be effective at secure software development is substantial. While a normal
undergraduate degree leading to an entry level position in computer programming takes
4 years of full time study, and a Masters degree normally takes two additional years of full time
effort, experts in secure software development are few and far between, and of course there are
almost none in academia today because they have systematically been weeded out through the
lack of funding. A long-term approach and a well-funded and sustained effort will be required if
the enormous losses and the ongoing threats to national security associated with software
insecurity are to be reversed.

While the recommendations included here provide some ways in which limited short term
improvements can be made through education, the quick fix approach to information protection
has been shown again and again to lead to the very situation we are in today; billions of dollars
per year paid for patching systems that remain insecure even after they are patched; increased
use of less skilled and less trustworthy people to build increasingly critical systems with higher
and higher consequences for their failure; offshoring software development work to countries
that have invested in their educational systems; and less and less of the critical expertise needed
to fix the problems. Similarly, if a training approach is used to mitigate immediate challenges,
the result will be no different than the situation as it stands today. While training is certainly a
necessary component of a national strategy, it will fail to accomplish the objectives of increased
software security unless an educational effort is undertaken to combine the advancement of
knowledge with the creation of expertise. This is something that is vitally needed and that
training cannot accomplish.

How Higher Education Works:

If educational institutions are to be successfully engaged in meeting the national needs the way
they operate must be understood. Unlike grade schools, high schools, training academies,
industry, and government, which all have a more or less hierarchical structure, institutes of
higher education are run by the faculty. The faculty in higher education does the lion's share of
the decision-making, they create and implement the curriculum, they lead the research efforts,
they propose the grants, and they lead the educational efforts. Academic accreditation of
academic institutions is done by faculty from other comparable institutions that send their faculty
to observe the programs and assure that they meet the standards set forth by national groups of
faculty.

Advanced degrees are not built like parts in a factory; they involve personal interactions between
experienced faculty and advanced students in a mentoring relationship over periods of years.
While a masters degree in some institutions can be earned in as little as a year of full time effort,
most masters students take two years or more to achieve their degree, while many students often
take three or four years to get there. A doctorate typically takes several years of full time effort
after a Masters degree is completed. Even the smartest people take years of concerted effort to
reach a level where they even qualify for an entry-level position as a professor. While it can be
argued that the number of people required to have the knowledge levels associated with
advanced degrees for implementing secure software is limited, creating a curriculum, teaching it
in universities, producing research results that will advance the state of the art, writing text

books, and similar activities cannot be done effectively by people with less expertise. When this
is done, the inevitable result is lower quality results - the sorts of low quality results we already
have today!

The tenure process that assures academic freedom to pursue the areas of endeavor of interest to
the faculty member normally comes only after approval by the existing tenured faculty and
typically requires a long-term commitment to academic excellence, participation on committees,
publications in refereed professional journals, teaching classes at a suitable level within the
curriculum, and, in research institutions, successful research funding and performance of that
funded research. After the four years of undergraduate education, two years of Masters study,
from two to five years of doctoral level study, and the five-year tenure process, faculty members
typically begin to pursue the most advanced work of their career. If they are exceptional, they
gain stature over time and are granted full professorships. These professors are then the most
influential of the faculty members, leaders within their departments, recognized around the world
for their excellence, members of accreditation boards, and in the prime of their academic careers.
This is the career path for the best of the best in academia, and these are the people that the
nation requires in order to bring about the changes required in information protection.

In order to engage faculty in universities in an area, no matter how interested in that area they
are, and no matter how skilled they are, they need to see a career path of this sort. A long-term
path that will last them throughout their career is necessary. While some professors may change
from area to area within a discipline, for the most part, the effort required to make major changes
and achieve the level of excellence that a full professor has involve the same level of effort
required to produce a new doctoral graduate from a bachelors graduate. In information
protection, a field that has been in existence for more than 5,000 years, there is a very large body
of knowledge that has to be understood in order to achieve excellence. It requires in-depth
understanding of many different sub-fields of computer science and computer engineering, as
well as substantial knowledge about a wide range of other fields from psychology to
management science.

While a doctoral level mathematician with expertise in number theory can do some limited work
in theoretical cryptography and protocol analysis, and a person with a doctorate in computer
engineering with a specialization in computer architecture can design new structures to support
operating system enhancements, these and many other sub-specialties are required for the
systems level understanding required to meet requirements for high surety systems, and in order
to be successful, a collaborative effort among many experts is required.

No single person can ever have all of the necessary expertise to do all of these things well, and
thus there is a need for a national community of professors with the combined understanding of
these issues and the collaborative structure required to apply these experts in concert if real
progress is to be made in building the high surety systems required for the future security of the
United States.

Of course the cost of a full professor is not the same as the cost of a recent university graduate.
Rather, it is about the same as the cost of a typical doctoral level employee of a national
laboratory. And the overhead of a university is not particularly lower than that of any other
institution. Despite the relatively lower pay scales for professors than people with comparable
expertise in industry, the total cost of a professor with the required level of experience for the
work needed by the nation is on the order of $250K per year. That means that to have a single

professor of this sort in every state in the nation would require a budget of about $12M/year, just
to fund their salaries and overhead. If they are to have equipment to do their work, support
graduate students in order to produce more of this expertise, serve on committees, produce
papers, attend conferences, and work with other universities in a national collaboration, the cost
goes up to more like $50M per year. That's for one professor per state, who can produce
something like 12 Masters graduates per year starting in 2 years and 4 doctoral level students per
year starting in 6 years. The current need for expertise in this area requires tens of thousands of
masters level graduates and thousands of doctoral level graduates.

How much is really spent on Cyber Security research?

Another way to look at this issue is to compare the funding levels for research in information
protection to funding levels in other areas.

Congress has passed, and the President signed into law, the "Cybersecurity Research and
Development Act" which authorizes $903 million over five years for establishing new training
programs and investing new resources in cybersecurity R&D. Yet the Act has been woefully
underfunded, leaving our research and academic institutions in the lurch. The actual funding that
went to the NSF was about $18M in information protection research funding. This ends up
finding about 15 projects per year and a few tens of graduate students. Of this work, software
security research is only covered in two or three of these projects. So the nation has at least a
$30B problem and is spending $3M to research ways to solve it, or about 1/10 of one cent per
dollar of loss. Human-computer interaction and information management gets funded at $44M.
Almost $25M goes to software design, but none of that involves high surety software research.
Almost $35M goes to software for improving education, but none of it is related to information
protection. Advanced computational infrastructure gets more than $71M, none of it associated
with making that infrastructure meets security requirements. $50M goes to intelligent systems -
intelligent perhaps, but not secure. The list is seemingly endless.

And NSF is funding far more information security research per available dollar than other
agencies. For example, let's look at the DARPA budget. According to the AAAS report, the
highlights of the FY2003 DARPA budget were that $1.9B dollars were spent on information
technology research and development. Cyber security research support was the $18M funded at
NSF and some additional monies funded at NIST and the NSA. According to NIST
cybersecurity researchers, the total budget for this area at NIST is $10M, however, salaries for
NIST personnel this FY come to $12M, so if they got an additional $2M, they would still not be
able to fund any work at universities in this area.

There can be little doubt that without a very substantial amount of long-term funding to support
academic research in information protection, the situation will continue to deteriorate. The only
real question is when it will deteriorate to the point of total collapse.
New, sustained, and substantial long-term funding to support academic research and the
development of the next generation of software security development experts is a crucial next
step.

Recommendations:

Problem statement: The main problem we face as a nation is generating the capacity necessary
to do the appropriate research and education to move this field forward. The capacity to do this
does not exist today and it will not create itself without the necessary backing of government and
industry. Without the people with state-of-the-art knowledge, research support, and educational
commitment, we will not create software systems and infrastructures that meet the national
security requirements of the United States.

A)Create a new public-private effort to build the academic educational and research capacity to improve
secure software development. Elements of such a program include:

1)Provide for delivery of educational content over the Internet. While the high quality
graduate level education that is needed to move the field forward has never been done
well online, a great deal can be done to leverage existing Internet capabilities and limited
academic expertise to provide undergraduate education to a far greater number of people
than can be handled today. While some schools already have limited Internet-based
courses, no comprehensive information protection curriculum exists and only one
advanced degree program in this area is underway completely over the Internet today.
Funding and collaboration across institutions funded in part 1 of this recommendation are
required in order for such a program to come online in the foreseeable future. This would
result in the creation of a common set of educational tools available to educators and
others over the Internet, with those educators educated on the value and uses of the tools
as a part of their educational process as described in recommendation A-3 below.

2)Develop educational material and capabilities that can be used across the nation to
educate new students and assist properly trained educators in teaching the most
critical material in this area. This material forms the supporting basis for the education
of educators and allows those educators to use the same materials used to educate them to
educate their students. These capabilities are likely to include a range of items including
but not limited to texts, collections of classic articles in the field, standards, technical
examples, worked examples of problem sets, and online simulations. These materials will
be developed as part of the programs identified under part 1 above and will grow over
time into a national educational library for secure software design.

3)Create accreditation bodies and processes to support the process. The accreditation
body most likely to be effective at the graduate level is a body formed from the
professors funded under this program. The fellows under this program will provide a
portion of their time to accreditation after the curriculum is created, and this ongoing
community participation will form one of the key bases for ongoing support.

4)Gain ongoing support for this program from government and industry. For support
by industry, the following criteria have been identified by industry:

a)Commitment - Fellowships should be awarded based on a contractual commitment
to perform research and teaching in the information assurance field for a
substantial period of time. If a Fellow chooses to cease to meet the obligations of
this program, the fellowship will be terminated and will require re-qualification as

a Fellow in the future. Commitment implies that the professor will be spending
their full time in this area and in support of these activities and will be funded at a
level suitable to achieving this level of commitment. The University is also
making a commitment to time, space, resources, a sustained program, hosting
invited personnel for the summer, and creating a change in the way they do
education across a wide range of fields. To justify this commitment, a long-term
relationship is needed between the parties with ongoing communication and
interaction.

b)Relevance - Research areas must fall into a category of generally accepted existing
or emergent problems in the area of commitment. The process of research must
emphasize modern technologies, tools, policies and practices to demonstrate a
concept. Research in cryptographic techniques will specifically be barred because
of the high level of existing funding and technology in cryptographic research.
Relevance is not just a tactical issue. The combination of research, education, and
programmatic efforts must allow the work to be meaningful today but also extend
the field for the future. Work on industry problems must be tempered with the
overall benefit of the research for the nation as a whole.

c)Performance - Fellowship awards shall be based on performance; future funding is
predicated on past success. Performance against success criteria will be decided
"in committee" between government and industry sponsors and with active
participation by other Fellows in the program. Performance in this case must
include evaluations of educational, research and community goals and must not
favor one over others. These goals are relevant to all three of the communities,
and all three of the communities must participate in evaluating them all. While
nobody can commit other peoples' funds, the review process shall be an open
process in which merits are considered and reasons given. The feedback from
these processes and the submissions to them will be open and available to all
current and potential Fellows and funders. This open approach to performance
evaluation is necessary in order to assure that the process is above board, to meet
government funding requirements, and to assure that an equal chance is given to
all who are interested in participating in these programs, as long as they meet the
program requirements.

d)Dissemination of Results where Appropriate - In addition to commonly accepted
means of informing the scientific community, Fellows must demonstrate an
ongoing process of additional methods of use and distribution of research results;
with particular emphasis on active methods. Merely placing materials on a
department or university website and publication in refereed journals is not
considered adequate for the purposes of this fellowship. Industry and government
respectively will assist in this effort by providing opportunities to present results
to industry and government bodies. Dissemination will explicitly include Web-
based publication and creation of capabilities that can be remotely used in an
active learning fashion, prototypes which are made available for others to use and
which are actively supported and transitioned into industry use, and evaluation
standards that are used in sample evaluations of real systems while under
development.

e)Licensing - A suitable license (exhibiting characteristics similar to the BSD
license) that respects the dissemination, distribution and commercialization goals
of the Bayh-Dole Act, and specifically allows for further distribution of the
created content in the public domain is also preferred, however, it is recognized
the one of the best ways to advance the state of the art is to provide intellectual
property rights to the inventors and those who fund their work. As a result,
royalties generated as a result of efforts related to this work will be returned to a
University endowment that will continue to fund research and education
consistent with the purposes of the original grants.

f)Measurement of Outcomes - Fellows should engage in research that demonstrates
a process to monitor outcomes, validate results, and methodologies for change to
the content over time. This includes a strict requirement for experimental
validation of results in keeping with the scientific method and the development of
repeatable tests with metrics to measure the efficacy of results. Purely theoretical
research with no practical implications or experimental refutation and
confirmation process is not appropriate to these fellowship programs.

g)Cost Sharing - This is a national problem, and therefore the federal government
should agree to fund the fellowship at least on a 1:1 basis with industry.

h)Adequate security; to wit: an acceptable use policy for students, staff and faculty
outlining how departmental resources are to be used, security policies that fit into
an overall campus IT strategy, data and media destruction policies, reasonable
auditing and logging practices, network diagrams that demonstrate air gaps
between experimental and production systems, and reasonable procedures for
incident response, data collection and preservation.

B)Create Software Security Certification Accreditation Program. Industry, academia,
and government should support the creation of a certification and accreditation program
for increasing security in software development. The group supports the development of
a university-academic partnership body responsible for setting core knowledge and skills
standards for software developers and IT professionals through a certification
accreditation process. The certification accreditation program should identify and
establish a minimum level of education from an accredited academic institution meeting
the standards developed by the University Fellows and a defined set of knowledge and
skills for given job responsibilities. The certification accreditation process should
provide employers with a degree of reliability for job performance for professionals with
security responsibilities.

C)Ensure Centers of Excellence Include Security Component. Secure software
development following accreditation guidelines developed hereunder should be included
as a mandatory component for designating NSA centers of excellence. DHS, National
Security Agency (NSA), NSF, NIST, and other federal agencies and departments should
follow academically derived and accredited curricula and programs within the established
Centers of Excellence and recreate a set of comprehensive and meaningful educational
standards in Information Assurance. These standards should be suited to the purpose with
consideration of the needs of industry and critical infrastructure protection, and not be

based on historical DoD standards or standards associated with classified information
which are inappropriate to and not in keeping with the needs of industry.

Metrics for progress:

Progress in this recommendation will be measured in the number of fellowships developed,
progress in curriculum development, progress in accreditations, progress in the production of
graduates at each level, and progress in research results. Specific goals are:

1)Funding for 12 full time fellowships of at least $1M each by the start of FY 2005 and
increased funding each year until the program reaches one funded Fellow per state in the
year 2008.

2)An increasing number of students in the program every year with Masters level graduates
within the first 24 months of the program and doctoral graduates within the first 4 years
of the project for each funded Fellowship.

3)At least 2 substantial research results per year per Fellow delivered in active ways to
government, industry, and the educational community.

4)Each Fellow will involve at least 6 professors per year in the education of educators
program, with knowledge brought back to community and junior colleges for courses
starting at the beginning of FY06 and continuing at that level each year thereafter.

The need for additional education in other areas of information protection:

The provision of these new skilled and educated employees, not only for a range of sub-
disciplines within the emerging body of knowledge, sometimes referred to as information
protection will also have to come from our nation’s universities. The United States has been
ineffective in producing the scholars, creating the academic discipline, and developing the
research necessary to provide us with the security requisite to our dependence on computer
systems which are the engines that permit our critical infrastructure and society to function so
effectively.

Thus, one of our nation’s very important challenges for the future is in the creation and
emergence of an academic discipline that will produce the next generation of faculty, university
researchers, industry professionals and national security experts that will all work to assure for
the integrity of our computer and information systems. This effort will require an investment of
an immediate nature because so many of the academicians who are capable in this area are now
in an age cohort close to retirement, with few standing ready to replace them.

Despite this paradox, our nation continues to rely on our computer systems to operate our
financial institutions, our electric and power grid systems, our water, our food production
systems, and almost all of our critical infrastructures that have made our nation one of the richest
in the history of the world. Yet, the computer systems and networks connecting our
interdependent economy are so vulnerable to attack.

The requirement for securing our computer systems adds an immense cost to our production
systems, as we must not only acquire this hardware and software, but also educate and train our
personnel to design and use the systems.

The scope of education required:

We expect our universities to produce graduates with the requisite knowledge to anticipate the
need for new and secure systems and to have and advance both the theory and knowledge
required to achieve these anticipated needs. The result must be an enlightened individual capable
of improving society’s access to effective and secure computer and information systems. For
specialists in some subfields our graduates must understand, appreciate, and apply an astonishing
breadth of material ranging from the operation of our legal system to the electronics underlying
modern computer systems. Here is an example of some of the material that must be taught in
courses required for students graduating in the computer forensics subfield by one university:

• Knowledge of computer operating systems with specific understanding of details of
Windows, Unix, Linux, Router, and telephone switching operating systems

• Knowledge in disk structures, file systems, and their internal operations and limitations
• Knowledge of forensic methods and utilities, such as disk and communications image

acquisition methods and tools
• Knowledge of network hardware and software topology, devices, mechanisms, and

limitations
• Knowledge of network security concepts, intrusion detection systems, firewall boundary

methodologies, and a wide array of other security devices
• Knowledge of network packets, packet collection and analysis tools, and the ability to

capture and analyze data packet traffic to detect network anomalies and collect evidence
• Knowledge of static and dynamic routing tables, network operations, and TCP/IP

protocol operations and limitations, and routing protocols as they relate to traffic flow on
the Internet over access provided by common carriers

• Knowledge of core Internet operations and configuration and management of domain
name servers, E-mail, and Web servers

• Knowledge of programming languages and the ability to write programs and scripts for
finding and analyzing files, content, audit logs, and other content for exploits, behaviors,
and digital crime scene reconstruction

• Knowledge and capability of identifying and acquiring evidence from production servers
and networks without disrupting the on-going business process

• Knowledge of the theoretical and practical aspects of computer viruses and malicious
code, and the creation and eradication of new viruses in controlled laboratory
experiments

• Knowledge of secure enterprise computing and the construction, deployment and testing
of network firewalls that operate on the Internet against common Internet based attack
methods

• Knowledge of audit based Computer Forensics and techniques for tracking attackers
across the Internet

• Knowledge of cryptography and stenographic systems and the major types of
cryptanalytic techniques and how they operate

• Knowledge of rules of evidence, search and seizure, and surveillance laws, investigative
methods and procedures, and hands on experience with all of these in real-world contexts

The Emergence of a New Academic Discipline:

Academia’s role in providing our nation with graduates capable of producing secure software,
and secure information systems has never been more important than the present. Educational
support grants and research funding at universities in this area has been inadequate to both
sustain full time faculty and the production of new graduates. Computer Science Departments
have focused on so many sub-disciplines within their area of study, with the resulting impact of
little to no emphasis on Information Protection. In fact, with few academic courses and little
research in this area the production of scholars who might be inclined to pursue information
protection as a career path is severely constrained. The design and emergence of a new
academic discipline in this important area is even less feasible without the academicians who
dedicate their academic career to this subject matter. It should hardly be a surprise, then, to learn
that little progress has been made in this area and that academia has not sustained information
protection as a discipline.

Conclusion:

The need for academic institutions to refocus their limited resources and develop curricula and
research agendas that will substantially improve the production of scholars and graduates
interested and focused in Information Protection will be of invaluable assistance to our nation.
As we focus more effort on developing interdisciplinary academic programs that embrace and
include computer science, engineering, law forensic investigation, and national security we will
be in a position to meet the challenges of the years to come.

We, as a nation, need to develop academic programs that will permit research and education
across major academic disciplines that will enhance the protection of our information assets and
the security of our nations computing resources and systems. Our nation requires additional
capacity in designing and building defensible information system security architecture, and this
will require not only multi-disciplinary academic programs, but also the emergence of new
academic disciplines. Our university community will and properly should assume the leadership
role in addressing this imperative need of our nation. The commitment of our academic
community will be a major step forward in enhancing our national capability for improved
research, education, training, and analysis that will provide strategic benefits for many years to
come. With a renewed focus on Information Protection, a multi-disciplinary structure that
provides a fusion of critical academic core disciplines will enlighten and enhance those who have
the responsibilities for protecting our nation’s critical infrastructure and computing resource.

B-1

Appendix B
Software Process Subgroup Report

P R O C E S S E S T O
P R O D U C E S E C U R E
S O F T WA R E

Towards more Secure Software

Volume I

Software Process Subgroup of the Task
Force on Security across the Software
Development Lifecycle

National Cyber Security Summit

March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

P R O C E S S E S T O
P R O D U C E S E C U R E
S O F T WA R E

Towards more Secure Software

Volume I

Software Process Subgroup of the Task Force on
Security across the Software Development
Lifecycle

National Cyber Security Summit

March 2004

Edited by Samuel T. Redwine, Jr. and Noopur
Davis

Copyright © 2004 Noopur Davis, Michael Howard, Watts Humphrey, Gary
McGraw, Samuel T. Redwine, Jr., Gerlinde Zibulski, Caroline Graettinger

Each copyright holder shall be deemed to have full non-exclusive rights.

Permission is granted for free usage of all or portions of this document including for
derived works provided proper acknowledgement is given and notice of its copyright is
included.

NO WARRANTY

THIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. THE EDITORS,
AUTHORS, CONTRIBUTORS, COPYRIGHT HOLDERS, MEMBERS OF CYBER
SECURITY SUMMIT SECURITY ACROSS THE SOFTWARE DEVELOPMENT
LIFECYCLE TASK FORCE, THEIR EMPLOYERS, THE CYBER SECURITY
SUMMIT SPONSORING ORGANIZATIONS, ALL OTHER ENTITIES
ASSOCIATED WITH REPORT, AND ENTITIES AND PRODUCTS
MENTIONED WITHIN THE REPORT MAKE NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. NO WARRANTY OF ANY KIND IS MADE WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of
the trademark holder.

i

Foreword
The Software Process Subgroup within the Task Force on Security across the Software
Development Lifecycle of the National Cyber Security Summit – Co-Chaired by Sam
Redwine (JMU), Geoff Shively (PivX), and Gerlinde Zibulski (SAP) – produced this
report. The Task Force and its Subgroups were established December 2-3 in Santa Clara,
California at the National Cyber Security Summit sponsored by the Department of
Homeland Security (DHS) and several industry groups – Business Software Alliance,
Information Technology Association of America, Tech Net, and US Chamber of
Commerce. The three-month effort to produce this report, spanning December 2003
through February 2004, is part of the DHS-private sector partnership. The Subgroup’s life
should extend beyond the production of this report, but its specific activities may vary.

Editors:
Samuel T. Redwine, Jr.
Noopur Davis

Authors:
Noopur Davis
Michael Howard
Watts Humphrey
Gary McGraw
Sam Redwine
Gerlinde Zibulski
Caroline Graettinger

Additional contributors included Roderick Chapman and Anthony Hall (Praxis Critical
Systems), Joe Jarzombek Office of the Assistant Secretary of Defense (Networks and
Information Integration), Richard C. Linger (Software Engineering Institute), Peter
Neumann (SRI), and Stacy J. Prowell (University of Tennessee). Papers prepared for the
Subgroup appear in VolumeII.

The editors want to thank task force members, particularly their co-authors, for the many
review comments received and the helpful issue discussions that occurred. In part, Sam
Redwine’s work was supported by Virginia’s Commonwealth Technology Research
Fund and the NIST’s Critical Infrastructure Protection Project through the Institute for
Infrastructure and Information Assurance (3IA) at James Madison University.

Special thanks go to Ron Moritiz (Computer Associates) and Philip Reitinger (Microsoft)
for participating in early teleconferences, Cindy Gagliano (Booz Allen Hamilton) and
Plonk Audrey (US CERT) for their administrative help, Jim Kohlenberger (Business
Software Alliance) for his leadership and administrative help, and to Caroline Graettinger
(Software Engineering Institute) for the section on Organizational Change.

ii

Software Process Subgroup membership:
Leslie Beach – SRA International
Noopur Davis – Software Engineering Institute
Kenneth Dill – PivX Solutions
Dana Foat – OSD(NII) DIAP Defense-wide Information Assurance Program
Richard George – National Security Agency
Kwang Ho Kim – AlphaInsight Corporation
Michael Howard – Microsoft
John Hudepohl – Nortel Networks
Watts Humphrey – Software Engineering Institute
Joe Jarzombek – Office of the Assistant Secretary of Defense (Networks and

Information Integration)
Lalita J. Jagadeesan – Lucent Technologies
James Lewis – Center for Strategic and International Studies
Steve Lipner – Microsoft
Paul Lloyd – HP
Gary McGraw – Cigital
Sam Redwine – James Madison University
Geoff Shively – PivX Solutions
Srinivasa Venkataraman – Appstream Inc.
Peggy Weigle – Sanctum
Ulrich Werner – SAP
Gerlinde Zibulski – SAP

Any corrections or comments regarding this report should be sent to Sam Redwine –
redwinst@jmu.edu.

iii

Executive Summary
The Software Process Subgroup addressed the process issues raised by the Security-
across-the-Software-Development-Lifecycle Task Force of the National Cyber Security
Summit. This subgroup report defines a path for software producers to follow in
producing secure software and it includes recommendations to software producing
organizations, educators, and the Department of Homeland Security (DHS) on how to
motivate and aid software producers in following these recommendations.

THE PROBLEM

Security is now a serious problem and, if present trends continue, the problem will be
much worse in the future. While there are many reasons for security problems, a primary
cause is that much of the software supporting the US cyber infrastructure cannot
withstand security attacks. These attacks exploit vulnerabilities in software systems.

Software security vulnerabilities are caused by defective specification, design, and
implementation. Unfortunately, common development practices leave software with
many vulnerabilities. To have a secure US cyber infrastructure, the supporting software
must contain few, if any, vulnerabilities. This requires that software be built to sound
security requirements and have few if any specification, design, or code defects.

Software specification, design, and code defects are unknowingly injected by software
developers and, to produce software with few defects, common development practices
must change to processes that produce software with very few defects. This requires that
developers use methods that consistently produce secure software, which in turn requires
development organizations to acquire a high level of security expertise, identify and
adopt processes for producing low-defect, secure software, and consistently use this
security expertise and these processes when they produce, enhance, maintain, and rework
the software that supports the US cyber infrastructure.

CURRENT STATUS

No processes or practices have currently been shown to consistently produce secure
software. However, some available development practices are capable of substantially
improving the security of software systems including having exceptionally low defect
rates. Since introducing these methods requires significant training and discipline, they
will not be widely adopted without strong motivation from sources such as corporate
leaders, customers, or regulation.

iv

REQUIRED ACTIONS

This report describes the actions required to address the current situation. The principal
actions are to broaden use of the currently most promising available practices for
developing low-defect, secure software, to produce definitive studies that compare the
relative effectiveness of available security practices, and to work within the software
industry to achieve widespread use of the most effective security practices. A
comprehensive program to validate that candidate software processes consistently
produce secure software is also needed.

RECOMMENDATIONS

The principal recommendations in this report are in three categories:

Principal Short-term Recommendations
• Adopt software development processes that can measurably reduce software

specification, design, and implementation defects.
• Producers should adopt practices for producing secure software
• Determine the effectiveness of available practices in measurably reducing

software security vulnerabilities, and adopt the ones that work.
• The Department of Homeland Security should support USCERT, IT-ISAC, or

other entities to work with software producers to determine the effectiveness
of practices that reduce software security vulnerabilities.

Principal Mid-term Recommendations
• Establish a security verification and validation program to evaluate candidate

software processes and practices for effectiveness in producing secure
software.

• Industry and the DHS establish measurable annual security goals for the
principal components of the US cyber infrastructure and track progress.

Principal Long-Term Recommendations
• Certify those processes demonstrated to be effective for producing secure

software.
• Broaden the research into and the teaching of secure software processes and

practices.

v

Table of Contents

FOREWORD ..I

EXECUTIVE SUMMARY ...III

THE PROBLEM... III

CURRENT STATUS... III

REQUIRED ACTIONS.. IV

RECOMMENDATIONS .. IV

Principal Short-term Recommendations ... iv

Principal Mid-term Recommendations ... iv

Principal Long-Term Recommendations .. iv

TABLE OF CONTENTS ... V

INTRODUCTION ... 1

SCOPE AND PURPOSE ... 1
SOFTWARE SECURITY GOALS AND PROPERTIES .. 1
SOFTWARE PROCESS.. 3
ORGANIZATION OF REPORT ... 3

THE PROBLEM.. 5

CURRENT SOFTWARE SECURITY PROBLEM IS SERIOUS ... 5
PROBLEM OF PRODUCING SECURE SOFTWARE IS COMPLEX .. 6
PROBLEM OF FORMALLY DEFINING SECURE SOFTWARE IS COMPLEX .. 7
WHY ARE EXISTING APPROACHES NOT IN WIDE USE?.. 7

REQUIREMENTS FOR PROCESSES AND PRACTICES TO PRODUCE SECURE SOFTWARE 9

OVERVIEW ... 9
PROCESS REQUIREMENTS .. 9
PROCESS APPLICATION .. 10
PROCESS CUSTOMIZATION... 11
CONCLUSIONS.. 11

PRACTICES FOR PRODUCING SECURE SOFTWARE.. 13

INTRODUCTION .. 13
SOFTWARE ENGINEERING PRACTICES ... 13

The Team Software Process ... 14

Formal Methods .. 16

Correctness-by-Construction...17
Cleanroom .. 18

Cleanroom Quality Results ...19
Process Models ... 20

TECHNICAL PRACTICES ... 21
Principles of Secure Software Development ... 21

vi

Threat Modeling .. 22

Attack Trees ... 22

Attack Patterns .. 23

Developer Guidelines and Checklists ... 25

Lifecycle Practices ... 26

Overview ...26
Programming Languages... 27
Tools..27
Testing...28

Risk Management .. 29

Other Considerations .. 30

Authentication, Authorization, Session Management, and Encryption ..30
Accountability ...31
Modifications and Patch Management..31
Use of Third-Party Software ...32

MANAGEMENT PRACTICES .. 32
RECOMMENDATIONS FOR THE DHS... 33

Short Term ... 33

Mid Term ... 33

Long Term .. 33

QUALIFYING PROCESSES AND PRACTICES AS PRODUCING SECURE SOFTWARE 35

PURPOSE .. 35
THE PROBLEMS IN QUALIFYING A PROCESS AS PRODUCING SECURE SOFTWARE 35
THE SUGGESTED VERIFICATION AND QUALIFICATION STRATEGY .. 36
PROMISING QUALIFICATION TECHNIQUES ... 39

Evaluating Available Practices .. 39

Surrogate Product Measures .. 39

Product Security Testing .. 40

Formal Security Proofs ... 40

RECOMMENDATIONS FOR DEPARTMENT OF HOMELAND SECURITY ON SOFTWARE PROCESS

QUALIFICATION ... 40
Short-Term Recommendations .. 40

Intermediate-Term Recommendations .. 41

Long-Term Recommendations ... 41

ORGANIZATIONAL CHANGE... 43

WHAT TO EXPECT .. 43

vii

TOOLS FOR CHANGE .. 45

RECOMMENDATIONS .. 47

SHORT-TERM RECOMMENDATIONS ... 47
MID-TERM RECOMMENDATIONS ... 49
LONG TERM RECOMMENDATIONS ... 50

Certification .. 50

Education and Training ... 50

Accountability ... 50

Evaluating New Technologies.. 51

CONCLUSION... 52

REFERENCES .. 53

viii

1

Introduction
SCOPE AND PURPOSE

Today, security problems involving computers and software are frequent, widespread,
and serious. The number and variety of attacks by persons and malicious software from
outside organizations, particularly via the Internet, are increasing rapidly, and the amount
and consequences of insider attacks remains serious.

This report concentrates on the processes and practices associated with producing secure
software. It mentions only in passing physical, operational, communication, hardware,
and personnel security. These are important topics but outside the scope of this report.
Concentrating on software, however, still covers the bulk of the security vulnerabilities
being exploited today – the ones in software.

Software security issues have long been studied, and, while open questions remain,
considerable bodies of research and practices to address them exist. This report outlines
known practices, recommended actions, and research needs, and is intended for the use of
software producers, the US Department of Homeland Security, and others interested in
improving the processes used to build software with security requirements. While limited
by the three months available for its production and the best knowledge of those
involved, this report provides substantial useful – albeit not exhaustive or all-knowing –
information and guidance for producers of software and those interested in improving the
current situation.

SOFTWARE SECURITY GOALS AND PROPERTIES

The primary goals of software security are the preservation of the confidentiality,
integrity, and availability (CIA) of the information assets and resources that the software
creates, stores, processes, or transmits including the executing programs themselves.
Preserving confidentiality is about preventing unauthorized disclosure; preserving
integrity is about preventing unauthorized alteration; and preserving availability is about
preventing unauthorized destruction or denial of access or service. The property of non-
repudiation, ensuring the inability to deny the ownership of prior actions, can be of
special interest.

Security is not just a question of security functionality; the properties desired must be
shown to hold wherever required throughout the secure system. Because security
properties are systems properties, security is an omnipresent issue throughout the
software lifecycle. [McGraw 2003]
In addition to the preservation of these properties within its digital domain by a software
system, other systems, organizational, or societal security goals can be contributed to by
software including:

• Establishing the real-world authenticity of users and data

2

• Establishing accountability of users
• Permitting usability so as to gain users’ acceptance of security features,
• Providing the abilities to deter and mislead attackers, detect attacks when they

happen, notify when they occur, continue service, confine their damage, rapidly
recover from them, easily repair software to prevent future attacks, and
investigate the attackers

As well as this ability to tolerate and recover from effects of attacks, the ability of a
system to defend in depth with multiple layers of defense is also desirable. Deciding the
extent of security-oriented development effort and functionality is a risk management
decision. Whatever one decides, the required security properties need to be explicitly
defined. Neither in the physical world nor for software can security be absolutely
guaranteed. Thus, when this report speaks of “secure software” the true meaning is
“highly secure software realizing – with justifiably high confidence but not guaranteeing
absolutely – a substantial set of explicit security properties and functionality including all
those required for its intended usage.”

In the remainder of this report we use the following security terminology – hopefully
already familiar to many readers. Threatening entities or agents may possess or be
postulated to possess certain capabilities and intentions creating threats. Threats utilize

vulnerabilities in the
system to perform their
attacks. Adversaries use
specific kinds of attacks
or “exploits” to take
advantage of particular
vulnerabilities in the
system. Systems may
have countermeasures to
reduce certain
vulnerabilities. See
Figure 1: Security
Concepts and
Relationships (Source:
Common Criteria) for
relationships among
these terms.

As an example, certain classes of vulnerabilities such as buffer overflows have proven
common in current software – despite the existence of known ways to avoid putting them
into software.

This is just one example of the widespread failure to utilize known practices – later a
number of these are identified in the Practices section of this report. Encouraging and
facilitating increased use of these practices is a central theme of this report.

Figure 1: Security Concepts and Relationships (Source: Common Criteria)

3

SOFTWARE PROCESS

The first books enumerating steps for a process to produce software appeared in the early
1960’s – if not earlier. Software process has been an active area of work in industry,
research, and government ever since – within this has been significant work on processes
for high-dependability systems. Today, a plethora of books contain mainly general
purpose practices and processes. These range from lightweight processes placing few
requirements on developers to heavyweight ones that provide a high level of guidance,
discipline, and support. [Boehm] Generally and not surprisingly, success in producing
high-dependability systems aimed at safety or security has been greater with software
processes closer to the heavyweight end of the spectrum and performed by highly skilled
people.

To reliably produce secure software, one needs three things:

1. An outstanding software process performed by skilled people

2. A sound mastery of the relevant security expertise, practices, and technology

3. The expert management required to ensure the resources, organization,
motivation, and discipline for success

Achieving these three things will require considerable effort by organizations that already
have simply a good software engineering process and even more from the bulk of
organizations that fall short of having even this. These processes and the required skill
and expertise to carry them out are the central issue in this report. Improving software
engineering practices and processes can not only lead to secure software but to software
released with few defects, with reasonable costs of development, with lower maintenance
costs, and with an enhanced reputation for the product.

ORGANIZATION OF REPORT

In addition to its Executive Summary, Foreword, and this Introduction, this report
contains sections on:

• The Problems involved in producing secure software
• Requirements for processes and practices to produce secure software
• Practices for producing more secure software
• Organizational Changes needed for introduction, use, and improvement of

processes and practices
• Qualifications: Verification, validation, and approval of processes, practices,

people, and products
• Recommendations

The problem section covers security and the current situation, and views of the problem
from industry, risk management, process, technical, product, and organizational

4

perspectives. The requirements section enumerates a set of required properties for a
process (or practice) to produce secure software in which one can have justifiable
confidence. Related issues are addressed in the Qualification section.
The bulk of this report is dedicated to describing current practices. While brief and only
covering a subset of the candidates for leading practices, these should prove to include
items that many can take immediate action on.

A section on the introduction, use, and improvement of processes and practices is
included to introduce organizations wishing to improve to the many issues involved in
organizational change and the body of knowledge about how to address them.
This report ends with sections on recommendations to industry, government, and
academia covering the near, mid, and long terms; and final conclusions.

5

The Problem
CURRENT SOFTWARE SECURITY PROBLEM IS SERIOUS

Intrusion and malicious software cost US industry and government ten plus billion dollars
per year and potential attacks on critical infrastructure remain a s erious concern. New
automatic attack triggers require no human action to deliver destructive payloads. Secur ity
incidents reported to the CERT Coordination Center rose 2,099 percent from 1998 thr ough
2002 – an average annual compounded rate of 116 percent. D uring 2003, the total was
137,529 incidents up from 82,094 in 2002. An incident may involve one to hundreds (or
even thousands) of sites and ongoing activity for long per iods. Thes e incidents res ulted from
vulnerabilities. Figure 2 shows the yearly number of vulnerabilities reported to CERT CC.
These can impact the cr itical inf rastr uctur e of the U S as well as its commerce and secur ity.

The substantial costs of a
vulnerability to producers
result from a number of
activities – initial testing,
patching, remediation
testing, and distribution, as
well as negative impact on
reputation. Thus, producers
can suffer serious
consequences.

The loss es of conf identiality
res ulting in identity theft or
stolen credit numbers are
frequently reported.
Substantial f raud losses
thr ough unauthorized
changes or tr ansactions
violating integrity are

occurring. Denial of service
attacks have occur red agains t

major Internet e-commer ce sites. For most s oftware pr oducers, however, combating these
and reducing their and society’s costs by producing s ecure software faces severe pr oblems.
The problems in producing software with the proper confidentiality, integrity, and
availability properties compound the existing problem of producing quality software –
already a serious one. Another way of saying this is that the quality of software (as
measured by vulnerabilities) is frequently not adequate to meet the demands of the
operating environment.

Figure 2: Vulnerabilities Reported to CERT CC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1999 2000 2001 2002 2003

6

PROBLEM OF PRODUCING SECURE SOFTWARE IS COMPLEX

For many reasons, producing secure software is complex. Connection to the Internet and
provisions for user extensibility introduce elements uncontrolled by the original
developer. The software product and its code are often already large and complex
themselves. Code has multiple roles as both a real-world actor and an engineering
representation.

Software’s production is a complex process involving many activities and specialties.
The types of activities range from requirements through maintenance plus management
and support tasks – each produces its own products. Dozens of specialties exist. For
example, just within design we have database design, network design, human interface
design, and security engineering design as well as the mainstream software architectural
and detailed design specialties. Other specialties such as business process, performance,
safety, and reliability engineering may also contribute. Thus, dozens of different kinds of
specialties and products are involved in a large development effort ranging from the
highly technical to management status reviews.

Computer science and security are deep subjects. As just one security-related example,
when two or more software components each possessing a security property are
combined, the resulting combination may not exhibit the property. Furthermore, the
analysis to establish if this is true can be quite subtle. And, in order to be done well,
software engineering and security engineering require serious engineering endeavors.
Producing quality software requires personnel with substantial education, training, and
experience. The project management involved in a substantial software project is also
significant with management issues causing more failed projects than technical ones.

The problems in correctly implementing the required security-related properties and
functionality encompass all those normally involved in producing defect free software on
time and within budget – plus issues involving security. Without analysis, any
specification, design, or code defect in the software may be potentially exploitable – thus,
the extreme need for few or no defects. Furthermore, verification needs to cover guarding
against intelligent adversaries – not just random adversity.

Justifiable confidence in the product can be created by design and construction in a
manner that is shown – possibly partially mathematically – to preserve the required
properties and provide security with an extremely low defect rate. To be able to do this,
the system design and preferably code need to be analyzable, which, given the state of the
art, restricts the structures that may be used. In addition, one can verify the absence of
known security defect types, [Whittaker] [Hogland] but, while quite useful, ultimately
this is not a substitute for proper design and construction.

The software development organization and environment must itself be secure. While
extensive, automated tool support has limitations. Finally, the software is sure to evolve
and change.

7

Thus, the problem of producing software with the proper confidentiality, integrity,
availability, and non-repudiation properties compounds the existing problem of
producing quality software, which is already a serious one. No easy answer exists to the
problem of building quality secure software.

PROBLEM OF FORMALLY DEFINING SECURE SOFTWARE IS COMPLEX

The problem of establishing the security properties and functionality a system should
have, both today and in the future, is difficult. Security functionality can be extensive;
Part 2 of the Common Criteria document takes 155 pages to enumerate possible security-
related functionality and has an equal number of pages of details and notes. [Common
Criteria Part 2] Security requirements are not just a question of listing security
functionality; the properties required must be shown to hold wherever required
throughout the secure system. Contrary to what most users and even many developers
assume, security functionality does not necessarily provide genuine security; security is a
systems property emerging from the totality of system behavior.

The first necessity for secure software is specifications that define secure behavior
exhibiting the security properties required. The specifications must define functionality
and be free of vulnerabilities that can be exploited by intruders. The second necessity for
secure software is correct implementation meeting specifications. Software is correct if it
exhibits only the behavior defined by its specification – not, as today is often the case,
exploitable behavior not specified, or even known to its developers and testers.

What kind of security and privacy are required, and what are its costs and risks are hard
questions. Technical judgment is not enough; management and marketing judgments are
required particularly when customers have limited interest in security or paying for it – or
possibly do not ask for it because they assume it is already included.

WHY ARE EXISTING APPROACHES NOT IN WIDE USE?

Largely driven by needs for high reliability and safety, approaches to building high-
dependability software systems exist today. As we will see in the section on Practices,
mating these with security concerns has already resulted in processes used on real
projects to produce secure software.

Doing what is required and carrying it to the extremes necessary is difficult on all levels –
individual, team, project, and organization – and includes others if out sourcing or
acquisition are involved. While, for current successful users, evidence exists that once
achieved such processes may take less time and effort, reaching there takes substantial
amounts of both.

This cost and required organizational courage and strain is one reason few organizations
currently use these practices for producing secure software – we address this problem in

8

the Organizational Change section – but other reasons exist. The first is that many
organizations do not recognize such approaches exist. This document is a step toward
solving this as are other current publications. [ACM] [Anderson] [IEEE] Another reason
is the belief that security is not required for product success. This comes from the
existence of other goals that are viewed as more important such as user convenience,
additional functionality, lower cost, and speedy time to market plus evidence that these
are what have sold products in the past.

On the other hand, legal demands for secure software are increasing; one example is

HIPAA in the health field,1 and, if software security problems persist, the spectre exists
of further regulation in the US and abroad. [Payne] In the absence of regulation, demand,
or competitive offerings, good citizenship or uncertain predictions of future demand have
had varying influences. Some organizations, however, such as Microsoft, are spending
substantial sums in attempts to improve the security of their products. [Howard 2003]
[Walsh]

Following increased awareness and unfortunate experiences, customers and users have
increased demands for security, but it is unclear how much more they will be willing to
pay for it or what the payoff for producers will be. Also, currently in the US, vendors are
avoiding almost all liability for any damages done or expenses caused to their customers
and users from software security problems. Lastly, secure software can only provide
security if it is properly operated and used. Organizations can experience discouraging
incidents not because of software faults but from such causes as improper settings or
procedures.

Reportedly, M icros oft has found that 50% of software secur ity problems ar e des ign f laws.
[McGraw 2003] Avoiding these types of design problems requires high levels of security
and design expertise. Within many software development organizations, personnel
currently do not have the mathematical backgrounds or the software and security design
and programming sophistication to use many of the approaches covered in the Practices
section. Like the prerequisite need to have a good software process before one can have
an outstanding one mentioned in the introduction, any such personnel shortcomings also
must be addressed.

While for most organizations the needed substantial change will be a hard path and
known practices are not perfect, the following sections in this report provide information
and motivation to those willing to take the journey.

1 Other laws having some impact include The Sarbanes-Oxley Act, Gramm-Leach-Bliley Act, and California SB 1386

(California Civil Code § 1798.82)

9

Requirements for Processes and Practices to
Produce Secure Software

OVERVIEW

The previous section described the problems in producing secure software. Addressing
these problems requires organizations developing and maintaining software use processes
that consistently produce secure software. This section describes the key requirements for
such software development processes. Follow-on sections discuss specific practices,
process verification, and introducing such a process into an organization.

These process requirements do not require any particular design, development, testing, or
other methods. Rather, they enumerate required characteristics – including management,
and measurement support.

PROCESS REQUIREMENTS

To effectively produce secure software and provide a secure cyber infrastructure, any
selected process must meet the following requirements.
• Coverage A secure process must cover the full software lifecycle from the earliest

requirements through design, development, delivery, maintenance, enhancement, and
retirement as well as all specialties required. Whenever necessary, the process used
must be capable of economically and securely maintaining, enhancing, and reworking
existing products to bring them up to an acceptable level of quality and security
including, when needed, exceptionally large software and systems.

• Def inition The process must be precisely defined so that it can be taught, supported,
verified, maintained, enhanced, and certified and all products and all process
activities must be precisely and comprehensively measured.

• Int egrit y The process must establish and guard the integrity of the product
throughout the life-cycle, starting with the requirements and design work and
including rigorous, secure configuration management and deployment. The process
must also provide means to help ensure the honesty, integrity, and non-maliciousness
of all the persons involved in product development, enhancement, testing, and
deployment.

• Measures The process must include measures to verify that the product developers
are capable of consistently and correctly using the process, that the process instructors
properly train the developers to consistently and accurately use the process, that the
correct process was properly used to develop the product, and that the process
consistently produces secure software products. In addition to measuring all of the
product work, measures are also required of all security-relevant product
characteristics and properties. To perform in this way, software organizations must
work to defined software engineering, security, and management goals and they must
precisely measure and track their work throughout the product’s lifetime. These

10

measures must provide the data needed to estimate and plan the work, to establish
team and personal goals, to assess project status, to report project progress to
management, to verify the quality of all phases of the work, to assess the quality of all
products produced, and to identify troublesome product characteristics and elements.
Such measures must also show how well the process was used and where and when
corrective actions are needed. These measures can also be used to assess the quality
of the training and coaching provided to the developers and their teams. Without such
measures, it would be impossible to verify the consistent and proper use of the
process or of the methods and practices it supports.

• Tailorin g The process must permit tailoring and enable verification that such
tailoring does not compromise the security of the resulting products.

• Usabilit y The process must be usable by properly trained and qualified software
developers, security specialists, managers, and other professionals, and it must be
economical and practical to use for developing a reasonably wide and defined range
of software product types.

• Own ership The process must be owned, supported, widely available, and regularly
updated to reflect changing threat conditions and improvements in knowledge and
technology. To have continuing confidence, all process updates must be rapidly and
verifiably disseminated to all users – this in turn requires having a known set of users.
Misuse must be prevented. Whenever intellectual property issues are relevant, the
process must be protected from counterfeiting, copying, and other forms of piracy.
While the process owner could be an individual, a corporation, or a university, it
could also be a government agency, a user consortium, an open-source association, or
any other established group that maintained the process consistent with these
requirements.

• Sup port The process must be fully supported with training programs, course
material, instructor’s guides, supporting tools, and qualification testing. Suitable
knowledge and skill training must be available for all the people who are involved
either directly or indirectly. Process support must include provisions for transitioning
the process into widespread use, qualifying instructors to teach the process, training
specialists to verify the proper use of the process, and certifying that qualified
developers produced any resulting products by properly using a qualified process.

• State of the Pract ice. The process must include use of quality state of the practice
methods for design, development, test, product measurement, and product
documentation. As the state of the art and state of the practice advance, the process
must enable the adoption of new methods including any required training and
support.

PROCESS APPLICATION

A process owner must enable organizations to qualify their own process specialists, to
train their own software people, and to manage their own development work. Provisions
must also be made to provide organizations with the skills and expertise to monitor and
review their own work and to verify that their products are secure. While the training and
qualification of software developers could be entrusted to educational, consulting, and

11

using organizations, all development and product qualification work must be rigorously
controlled and tracked.

In addition, the training and qualification of process instructors and process coaches
and/or reviewers must remain controlled and monitored to ensure a high degree of
compliance. Further, there must be provisions for training all levels of development
management from the most senior executives to the development team leaders, the
individual team members, and the testing and assurance staffs. This training must be
consistently effective in motivating and guiding all management levels in properly
introducing and monitoring the use of the process.
Provisions must exist for auditing product certifications to ensure that they are justified
by the available data.

Provisions must also exist for identifying and qualifying new processes or practices that
produce secure software and that are shown to meet the defined requirements for a
process to produce secure software.

PROCESS CUSTOMIZATION

To be widely applicable, a secure development process must fit the needs of each using
organization. This must permit software groups to adjust the process to use new methods,
tools, and technologies and be flexible enough to support integrated development teams
that include software development and all other specialties needed for the software and
systems work. With multiple using organizations, an organization must – within
identified limitations – be able to define the specific process details for its own use,
specify the methods and technologies its people will use, and gather and supply the data
needed to verify the security of the process it uses and the products it produces.

CONCLUSIONS

This section has briefly summarized requirements for a secure software development
process. Such a process requires outstanding software engineering, sound security
engineering, extensive training, consistently disciplined work, comprehensive data, and
capable and effective management and coaching support. Software processes that meet
the requirements enumerated in this section will enable qualified software groups to help
secure the US cyber infrastructure.

As we will see in the next section, methods and practices are known for producing high-
quality and secure software, but they are not widely practiced. Their effective application
requires that software teams consistently use defined, measured, and quality-controlled
processes. When they work in this way, teams can produce essentially defect-free
software products that are highly likely to be secure [Davis] [Hall 2002]. Further, with
such processes, software groups have the data to identify the most effective quality and

12

security practices, to ensure that these practices are consistently followed, and to verify
that the resulting products are secure.

13

Practices for Producing Secure Software
INTRODUCTION

As discussed in the previous sections, the problem of producing secure software is both a
software engineering problem and a security engineering problem. Software engineering
addresses problems such as planning, tracking, quality management, and measurement as
well as engineering tasks. Security engineering addresses methods and tools needed to
design, implement, and test secure systems. This section starts with a discussion of
software processes that implement software engineering best practices, followed by a
description of technical practices that can be used in various phases of a software
development lifecycle. Thirdly, management practices are discussed. Finally, additional
recommendations are made to the DHS to accelerate the adoption these processes and
practices for producing secure software. Overall, the recommendations can be
summarized as:

1. Start with outstanding software engineering practices.
2. Augment with sound technical practices relevant to producing secure software.
3. Support with the management practices required for producing secure software.

Wherever possible, quantitatively measure the effectiveness of a practice and improve.
Each section starts with a description of a practice, process, or method, and then presents
any evidence of its effectiveness followed by any known usage problems.

SOFTWARE ENGINEERING PRACTICES

Many security vulnerabilities result from defects that are unintentionally introduced in
the software during design and development. According to a preliminary analysis done
by the CERT® Coordination Center, over 90% of software security vulnerabilities are

caused by known software defect types2, and most software vulnerabilities arise from
common causes: the top ten causes account for about 75% of all vulnerabilities.

Therefore, to significantly reduce software vulnerabilities, the overall specification,
design, and implementation defects in software must be reduced from today’s common
practices that lead to a large number of these defects in released software. Analysis
performed at the Software Engineering Institute (SEI) of thousands of programs produced
by thousands of software developers show that even experienced developers inject
numerous defects as they produce software [Hayes] [Davis]. One design or
implementation defect is injected for every 7 to 10 lines of new and changed code

2 The definition of a defect as used in this paper is fairly broad: a defect is anything that leads to a fix in a

product. Some examples of defects include requirements defects, design defects, security defects,
usability defects, as well as coding errors or “bugs”. To reinforce the fact that we are not just talking
about coding errors, we will use the words specification, design and implementation defects
throughout this section.

14

produced. Even if 99% of these design and implementation defects are removed before
the software is released, this leaves 1 to 1.5 design and implementation defects in every
thousand lines of new and changed code produced. Indeed, software benchmark studies
conducted on hundreds of software projects show that the average specification, design,
and implementation defect content of released software varies from about 1 to 7 defects
per thousand lines of new and changed code produced [Jones 2000].

This, along with consideration of the nature of security problems, leads to the conclusion
that reducing overall design and implementation defects by one to two orders of
magnitude is a prerequisite to producing secure software. To be effective, these practices
should be used in a planned and managed environment.

The following processes and process models were developed to improve software
engineering practices. Particular attention has been paid to those that have demonstrated
substantial reduction in overall software design and implementation defects, as well as
reduction in security vulnerabilities.

The Team Software Process
The Software Engineering Institute’s Team Software ProcessSM (TSP) is an operational
process for use by software development teams. The process has been shown to be very
effective for producing near defect-free software on schedule and within budget. To date,
the TSP has been used by many organizations. A recent study of 20 projects in 13
organizations showed that teams using the TSP produced software with an average of
0.06 delivered design and implementation defects per thousand lines of new and changed
code produced. The average schedule error was just 6% [Davis].
The TSP’s operational process definitions are based on Deming’s concept of an
operational definition “that gives communicable meaning to a concept by specifying how
the concept is measured and applied within a particular set of circumstances” [Deming].
Operational processes provide step-by-step guidance on how to do something and then
how to measure what has been done.

The SEI developed the TSP as a set of defined and measured best practices for use by
individual software developers and software development teams [Humphrey]. Teams
using the TSP:

1. Manage and remove specification, design, and implementation defects throughout
the developed lifecycle

a. Defect prevention so specification, design, and implementation defects are
not introduced to begin with

b. Defect removal as soon as possible after defect injection
2. Control the process through measurement and quality management
3. Monitor the process
4. Use predictive measures for remaining defects

SM Team Software Process, TSP, Personal Software Process, and PSP are service marks of Carnegie Mellon

University.

15

Since schedule pressures and people issues often get in the way of implementing best
practices, the TSP helps build self-directed development teams, and then puts these teams
in charge of their own work. TSP teams:

1. Develop their own plans
2. Make their own commitments
3. Track and manage their own work
4. Take corrective action when needed

The TSP includes a systematic way to train software developers and managers, to
introduce the methods into an organization, and to involve management at all levels.
The Team Software Process for Secure Software Development (TSP-Secure) augments
the TSP with security practices throughout the software development lifecycle. Software
developers receive additional training in security issues, such as common causes of
security vulnerabilities, security-oriented design methods such as formal state machine
design and analysis, security-conscious implementation methods such as secure code
review checklists, as well as security testing methods. While the TSP-Secure variant of
the TSP is relatively new, a team using TSP-Secure produced near defect-free software
with no security defects found during security audits and in several months of use.

The following tables show some results of using the TSP on 20 projects in 13
organizations [Davis]. The projects were completed between 2001 and 2003. Project size
varied from a few hundred to over a hundred thousand lines of new and changed code
produced. The mean and median size of the projects was around thirty thousand lines of
new and changed code produced. Table 1 shows schedule performance compared to
results reported by the Standish Group. Table 2 shows quality performance compared to
typical software projects.

Table 1: TSP Project Results - Schedule

Measure
TSP
Projects

Typical Projects
(Standish Group Chaos Report)

Schedule error
average

6%

Schedule error
range

-20% to
+27%

16

Measure TSP Projects

Average

Range

Typical Projects

Average

System test defects (design and
implementation defects discovered during
system test, per thousand lines of new and
changed code produced)

0.4

0 to 0.9 2 to 15

Delivered defects (design and
implementation defects discovered after
delivery, per thousand lines of new and
changed code produced)

0.06

0 to 0.2 1 to 7

System test effort (% of total effort of
development teams)

4%

2% to 7%

40%

System test schedule (% of total duration
for product development)

18%

8% to 25%

40%

Duration of system test (days/KLOC, or
days to test 1000 lines of new and changed
code produced)

0.5

0.2 to 0.8

NA3

Table 2: TSP Project Results - Quality

The difficulties with using the TSP primarily concern the initial required investment in
training. To properly use the TSP, software developers must first be trained in the
Personal Software Process (PSP) and must be willing to use disciplined methods for
software development. The TSP cannot be introduced or sustained without senior and
project management support and oversight. Finally, for most organizations, effective TSP
use requires that the management and technical cultures enable rigorously performed
technical work and consistent, sustained coaching, empowerment, and motivation of self-
directed TSP teams.

Formal Methods
Formal methods are mathematically-based approaches to software production that use
mathematical models and formal logic to support rigorous software specification, design,
coding, and verification. The goals of most formal methods are to:
• Reduce the defects introduced into a product, especially during the earlier

development activities of specification and design.
• Place confidence in the product not on the basis of particular tests, but on a method

that covers all cases

Formal methods can be applied to a few or to almost all software development activities:
requirements, design, and implementation. The degree to which formal methods are
applied varies from the occasional use of mathematical notations in specifications
otherwise written in English, to the most rigorous use of fully formal languages with

3 This data was not available.

17

precise semantics and associated methods for formal proofs of consistency and
correctness throughout development.
There is an alphabet soup of tools, notations, and languages available for use: from
(alphabetically) ADL (Algebraic Design Language), a higher-order software specification
language based on concepts in algebra, developed at the Oregon Graduate Institute, to Z
(Zed), a formal notation for writing specifications [Spivey].

Several NASA case studies describe the results of using formal methods for requirements
analysis [NASA]. Benefits of using a formal specification notation such as the Z notation
have been documented [Houston]. With at least one negative exception [Naur], other
studies investigating the effectiveness of formal methods have been somewhat
inconclusive, but tend to support a positive influence on product quality [Pfleeger].

Correctness-by-Construction
One process that incorporates formal methods into an overall process of early verification
and defect removal throughout the software lifecycle is the Correctness-by-Construction
method of Praxis Critical Systems Limited [Hall 2002]. The principles of Correctness-by-
Construction are:

1. Do not introduce errors in the first place.
2. Remove any errors as close as possible to the point that they are introduced.

This process incorporates formal notations used to specify system and design components
with review and analyses for consistency and correctness. For secure systems, they
categorize system state and operations according to their impact on security and aim for
an architecture that minimizes and isolates security-critical functions reducing the cost
and effort of the (possibly more rigorous) verification of those units.

The Correctness-by-Construction method has produced near-defect-free software in five
projects completed between 1992 and 2003, with delivered defect densities ranging from
0.75 to 0.04 defects per thousand lines of code. Two of the five projects had substantial
security requirements to fulfill. The following table shows details [Hall 2004]. Table 3
presents key metrics for each of these projects. The first column identifies the project.
The second identifies the year in which the project was completed. Column three shows
the size of the delivered system in physical non-comment, non-blank lines of code. The
fourth column shows productivity (lines of code divided by the total project effort for all
project phases from project start up to completion). The final column reports the
delivered defect rate in defects per thousand lines of code.

18

Project Year Size (loc) Productivity (loc
per day)

Defects (per kloc)

CDIS 1992 197,000 12.7 0.75

SHOLIS 1997 27,000 7.0 0.22

MULTOS CA 1999 100,000 28.0 0.04

A 2001 39,000 11.0 0.05

B 2003 10,000 38.0 04

Table 3: Correctness-by-Construction Project Results

Almost all US software production organizations know little or nothing about formal
methods; some others are reluctant to use them. First, while for many methods the actual
mathematics involved is not advanced, these methods require a mathematically rigorous
way of thinking that most software developers are unfamiliar with. Second, as with TSP,
they involve substantial up-front training. Lastly, the methods require the use of
notations, tools, and programming languages that are not in widespread use in industry,
thus requiring substantial changes from the way most organizations produce software
today.

Cleanroom
Cleanroom software engineering [Linger 2004] [Mills] [Powell] is a theory-based, team-
oriented process for developing and certifying correct software systems under statistical
quality control. The name “Cleanroom” conveys an analogy to the precision engineering
of hardware cleanrooms. Cleanroom covers the entire life cycle, and includes project
management by incremental development, function-based specification and design,
functional correctness verification, and statistical testing for certification of software
fitness for use. Cleanroom teams are organized into specification, development, and
certification roles. Cleanroom software engineering achieves statistical quality control
over software development by separating the design process from the statistical testing
process in a pipeline of incremental software development, as described below.

Incremental Development. System development is organized into a series of fast
increments for specification, development, and certification. Increment functionality is
defined such that successive increments 1) can be tested in the system environment for
quality assessment and user feedback, and 2) accumulate into the final
product—successive increments plug into and extend the functionality of prior
increments; when the last increment is added, the system is complete. The theoretical
basis for such incremental development is referential transparency between specifications
and their implementations. At each stage, an executing partial product provides evidence
of progress and earned value. The incremental development motto is “quick and clean;”
increments are small in relation to entire systems, and developed fast enough to permit
rapid response to user feedback and changing requirements.

4 This project has been subject to evaluation by an independent V&V organization. Zero software defects

have been found, but the independent test results are not yet officially released.

19

Function-Based Specification and Design. Cleanroom treats programs as
implementations of mathematical functions or relations. Function specifications can be
precisely defined for each increment in terms of black box behavior, that is, mappings
from histories of use into responses, or state box behavior, that is, mappings from
stimulus and current state into response and new state. At the lower level of program
design, intended functions of individual control structures can be defined and inserted as
comments for use in correctness verification. At each level, behavior with respect to
security properties can be defined and reviewed.

Functional Correctness Verification. A correctness theorem defines the conditions to
be verified for each programming control structure type. Verification is carried out in
team inspections with the objective of producing software approaching zero defects prior
to first-ever execution. Experience shows any errors left behind by human fallibility tend
to be superficial coding problems, not deep design defects.

Statistical Testing. With no or few defects present at the completion of coding, the role
of testing shifts from debugging to certification of software fitness for use through usage-
based statistical testing. Models of usage steps and their probabilities are sampled to
generate test cases that simulate user operations. The models treat legitimate and
intrusion usage on a par, thereby capturing both benign and threat environments. Usage-
based testing permits valid statistical estimation of quality with respect to all the
executions not tested and tends to find any remaining high-failure-rate defects early,
thereby quickly improving the MTTF of the software. Because fewer defects enter test,
Cleanroom testing is more efficient. Historically, statistical testing has been a tool to
predict reliability, not security.

Cleanroom Quality Results
The Cleanroom process has been applied with excellent results. For example, the
Cleanroom-developed IBM COBOL Structuring Facility automatically transforms
unstructured legacy COBOL programs into structured form for improved maintenance,
and played a key role in Y2K program analysis. This 85-KLOC program experienced just
seven minor errors, all simple fixes, in the first three years of intensive field use, for a
fielded defect rate of 0.08 errors/KLOC [Linger 1994].

Selective application of Cleanroom techniques also yields good results. For example, as
reported in [Broadfoot], Cleanroom specification techniques were applied to development
of a distributed, real-time system. Cleanroom specifications for system components were
transformed into expressions in the process algebra CSP. This allowed use of a theorem
prover or model checker to demonstrate that the resulting system was deadlock-free and
independent of timing issues. The resulting system consisted of 20 KLOC of C++ which
in twelve months of field use of the system, only eight minor defects were discovered; all
localized coding errors easy to diagnose and fix.

A number of Cleanroom projects involve classified activities that cannot be reported
upon. Overall experience shows, however, that fielded defect rates range from under 0.1
errors/ KLOC with full Cleanroom application to 0.4 defects/KLOC with partial

20

Cleanroom application. Many code increments never experience the first error in testing,
measured from first-ever execution, or in field use. Defects found have tended to be
coding errors rather than specification or design problems.

Adopting Cleanroom Software Engineering requires training and discipline. Cleanroom
utilizes theory-based correctness verification in team reviews rather than less-effective
unit debugging – for some programmers, this switch can be an initial stumbling block.
Some Cleanroom methods have been incorporated in TSP projects. Its methods of proof
are performed more informally than those in Correctness by Construction and are more
accessible to programmers.

Process Models
Process models provide goal-level definitions for and key attributes of specific processes
(for example, security engineering processes), but do not include operational guidance for
process definition and implementation – they state requirements and activities of an
acceptable process but not how to do it. Process models are not intended to be how-to
guides for improving particular engineering skills. Instead, organizations can use the
goals and attributes defined in process models as high-level guides for defining and
improving their management and engineering processes in the ways they feel are most
appropriate for them.

Capability Maturity Model s (CMMs) are a type of process model intended to guide
organizations in improving their capability to perform a particular process. CMMs can
also be used to evaluate organizations against the model criteria to identify areas needing
improvement. CMM-based evaluations are not meant to replace product evaluation or
system certification. Rather, organizational evaluations are meant to focus process
improvement efforts on weaknesses identified in particular process areas. CMMs are
currently used by over a thousand organizations to guide process improvement and
evaluate capabilities.

There are currently three CMMs that address security, the Capability Maturity Model
Integration® (CMMI®), the integrated Capability Maturity Model (iCMM), and the
Systems Security Engineering Capability Maturity Model (SSE-CMM). A common
Safety and Security Assurance Application Area is currently under review for the iCMM
and CMMI, along with a new Process Area for Work Environment, and the proposed
goals and practices have been piloted for use. All of these CMMs are based on the
Capability Maturity Model (CMM®). Further information about the SSE-CMM is
available at http://www.sse-cmm.org, about the CMMI at http://www.sei.cmu.edu, and
about iCMM at www.faa.gov/aio or www.faa.gov/ipg. Further information is also
available in materials that accompany this report.

The plethora of models and standards can be somewhat daunting (SSE-CMM, iCMM,
CMMI-SE/SW/IPPD and CMMI-A, ISO 9001:2000, EIA/IS 731, Malcolm Baldrige

 Capability Maturity Model, CMM, Capability Maturity Model Integrated, and CMMI are registered trademarks of

Carnegie Mellon University.

21

National Quality Award, Total Quality Management, Six Sigma, President's Quality
Award criteria, ISO/IEC TR 15504, ISO/IEC 12207, and ISO/IEC CD 15288). Evidence
exists, however, that using process models for improving the software process results in
overall reduction in design and implementation defects in the software produced
[Herbsleb] [Goldenson] [Jones].

TECHNICAL PRACTICES

Some security vulnerabilities are caused by oversights that lead to defect types such as
declaration errors, logic errors, loop control errors, conditional expression errors, failure
to validate input, interface specification errors, and configuration errors. These causes can
be addressed to a large degree by using software engineering practices. However, other
security vulnerabilities are caused by security-specific modeling, architecture, and design
issues such as failure to identify threats, inadequate authentication, invalid authorization,
incorrect use of cryptography, failure to protect data, and failure to carefully partition
applications. Effective practices that directly address security are needed to handle these
problems. Technical practices must be used within the overall context of a planned and
managed process for producing secure software that plans the use of the practices,
monitors their execution, and measures their effectiveness. Most, if not all, of the
technical practices described here require considerable security expertise. Available
expert help is recommended during all phases of the software lifecycle, especially during
specification and design.

While many technical practices are in use today for producing secure software, very little
empirical evidence exists of their effectiveness.
This section begins with a discussion of some well-tested principles for secure software
development. Then, some of the better-known practices for producing secure software are
briefly described. Other practices worth considering exist. The list of practices included
in this subsection is not exhaustive, but is hopefully representative. Empirical or
anecdotal evidence of effectiveness is noted where available.

Principles of Secure Software Development
While principles alone are not sufficient for secure software development, principles can
help guide secure software development practices. Some of the earliest secure software
development principles were proposed by Saltzer and Schroeder in 1974 [Saltzer]. These
eight principles apply today as well and are repeated verbatim here:

1. Economy of mechanism: Keep the design as simple and small as possible.
2. Fail-safe defaults: Base access decisions on permission rather than exclusion.
3. Complete mediation: Every access to every object must be checked for authority.
4. Open design: The design should not be secret.
5. Separation of privilege: Where feasible, a protection mechanism that requires two

keys to unlock it is more robust and flexible than one that allows access to the
presenter of only a single key.

6. Least privilege: Every program and every user of the system should operate using
the least set of privileges necessary to complete the job.

7. Least common mechanism: Minimize the amount of mechanism common to more
than one user and depended on by all users.

22

8. Psychological acceptability: It is essential that the human interface be designed
for ease of use, so that users routinely and automatically apply the protection
mechanisms correctly.

Later work by Peter Neumann [Neumann], John Viega and Gary McGraw [Viega], and
the Open Web Application Security Project (http://www.owasp.org) builds on these basic
security principles, but the essence remains the same and has stood the test of time.

Threat Modeling
Threat modeling is a security analysis methodology that can be used to identify risks, and
guide subsequent design, coding, and testing decisions. The methodology is mainly used
in the earliest phases of a project, using specifications, architectural views, data flow
diagrams, activity diagrams, etc. But it can also be used with detailed design documents
and code. Threat modeling addresses those threats with the potential of causing the
maximum damage to an application.
Overall, threat modeling involves identifying the key assets of an application,
decomposing the application, identifying and categorizing the threats to each asset or
component, rating the threats based on a risk ranking, and then developing threat
mitigation strategies that are then implemented in designs, code, and test cases.
Microsoft has defined a structured method for threat modeling, consisting of the
following steps [Howard 2002].
• Identify assets
• Create an architecture overview
• Decompose the application
• Identify the threats
• Categorize the threats using the STRIDE model (Spoofing, Tampering, Repudiation,

Information disclosure, Denial of service, and Elevation of privilege)
• Rank the threats using the DREAD categories (Damage potential, Reproducibility,

Exploitability, Affected users, and Discoverability).
• Develop threat mitigation strategies for the highest ranking threats

Other structured methods for threat modeling are available as well [Schneier].

Although some anecdotal evidence exists for the effectiveness of threat modeling in
reducing security vulnerabilities, no empirical evidence is readily available.

Attack Trees
Attack trees characterize system security when faced with varying attacks. The use of
Attack Trees for characterizing system security is based partially on Nancy Leveson’s
work with "fault trees" in software safety [Leveson]. Attack trees model the decision-
making process of attackers. Attacks against a system are represented in a tree structure.
The root of the tree represents the potential goal of an attacker (for example, to steal a
credit card number). The nodes in the tree represent actions the attacker takes, and each
path in the tree represents a unique attack to achieve the goal of the attacker.

23

Attack trees can be used to answer questions such as what is the easiest attack. The
cheapest attack? The attack that causes the most damage? The hardest to detect attack?
Attack trees are used for risk analysis, to answer questions about the system’s security, to
capture security knowledge in a reusable way, and to design, implement, and test
countermeasures to attacks [Viega] [Schneier] [Moore].
Just as with Threat Modeling, there is anecdotal evidence of the benefits of using Attack
Trees, but no empirical evidence is readily available.

Attack Patterns
Hoglund and McGraw have identified forty-nine attack patterns that can guide design,
implementation, and testing [Hoglund]. These soon to be published patterns include:

1. Make the Client Invisible

2. Target Programs That Write to
Privileged OS Resources

3. Use a User-Supplied
Configuration File to Run
Commands That Elevate
Privilege

4. Make Use of Configuration File
Search Paths

5. Direct Access to Executable Files

6. Embedding Scripts within Scripts

7. Leverage Executable Code in
Nonexecutable Files

8. Argument Injection

9. Command Delimiters

10. Multiple Parsers and Double
Escapes

11. User-Supplied Variable Passed to
File System Calls

12. Postfix NULL Terminator

13. Postfix, Null Terminate, and
Backslash

14. Relative Path Traversal

15. Client-Controlled Environment
Variables

16. User-Supplied Global Variables
(DEBUG=1, PHP Globals, and
So Forth)

17. Session ID, Resource ID, and
Blind Trust

18. Analog In-Band Switching
Signals (aka “Blue Boxing”)

19. Attack Pattern Fragment:
Manipulating Terminal Devices

20. Simple Script Injection

21. Embedding Script in Nonscript
Elements

22. XSS in HTTP Headers

23. HTTP Query Strings

24. User-Controlled Filename

25. Passing Local Filenames to
Functions That Expect a URL

26. Meta-characters in E-mail
Header

27. File System Function Injection,
Content Based

28. Client-side Injection, Buffer
Overflow

29. Cause Web Server
Misclassification

30. Alternate Encoding the Leading
Ghost Characters

31. Using Slashes in Alternate
Encoding

32. Using Escaped Slashes in
Alternate Encoding

24

33. Unicode Encoding

34. UTF-8 Encoding

35. URL Encoding

36. Alternative IP Addresses

37. Slashes and URL Encoding
Combined

38. Web Logs

39. Overflow Binary Resource File

40. Overflow Variables and Tags

41. Overflow Symbolic Links

42. MIME Conversion

43. HTTP Cookies

44. Filter Failure through Buffer
Overflow

45. Buffer Overflow with
Environment Variables

46. Buffer Overflow in an API Call

47. Buffer Overflow in Local
Command-Line Utilities

48. Parameter Expansion

49. String Format Overflow in
syslog()

25

These attack patterns can be used discover potential security defects.

Developer Guidelines and Checklists
Secure software development guidelines are statements or other indications of policy or
procedure by which developers can determine a course of action. Guidelines must not be
confused with processes or methods; they do not provide step-by-step guidance on how
to do something. Rather, they are principles that are useful to remember when designing
systems.

Some universal guidelines that are common across organizations such as Microsoft, SAP,
and also promoted by the Open Web Application Security Project
(http://www.owaspp.org) are listed here:

1. Validate Input and Output

2. Fail Securely (Closed)

3. Keep it Simple

4. Use and Reuse Trusted Components

5. Defense in Depth

6. Security By Obscurity Won't Work

7. Least Privilege: provide only the privileges absolutely required

8. Compartmentalization (Separation of Privileges)

9. No homegrown encryption algorithms

10. Encryption of all communication must be possible

11. No transmission of passwords in plain text

12. Secure default configuration

13. Secure delivery

14. No back doors

Checklists help developers with lists of items to be checked or remembered. Security
checklists must be used with a corresponding process to be useful. For example, when
security code review checklists are used during code reviews, their use must be assured,
their effectiveness measured, and they must be updated based on their effectiveness.

Code checklists are usually specific to a particular programming language, programming
environment, or development platform. Sample security checklists from organizations
such as Microsoft and SAP are included in the on-line reference available with this paper.
References to other checklists are also provided.

26

Lifecycle Practices
Overview
This overview subsection is based closely on [McGraw 2004] appearing in IEEE Security
and Privacy magazine and is used with permission of the author. Most approaches in
practice today encompass training for developers, testers, and architects, analysis and
auditing of software artifacts, and security engineering. Figure 3 specifies one set of
practices that software practitioners can apply to various software artifacts produced. The
remainder of this section identifies a number of existing practices and lessons.

Figure 3: Software security best practices applied to various software artifacts. Although the artifacts are
laid out according to a traditional waterfall model in this picture, most organizations follow an iterative
approach today, which means that best practices will be cycled through more than once as the software

evolves

Security requirements must explicitly cover both overt functional security (e.g.
cryptography) and emergent systems characteristics and properties. One practice is abuse
cases. Similar to use cases, abuse cases describe the system’s behavior under attack;
building them requires explicit coverage of what should be protected, from whom, and
for how long.

At the design and architecture level, a system must be coherent and present a unified
security architecture that takes into account security principles (such as the principle of
least privilege). Designers, architects, and analysts must clearly document assumptions
and identify possible attacks. At both the specifications-based architecture stage and at
the class-hierarchy design stage, risk analysis is a necessity—security analysts should
uncover and rank risks so that mitigation can begin. Disregarding risk analysis at this
level will lead to costly problems down the road. External analysis (outside the design
team) is often helps.

Requirements
and use cases

Design Test plans Code Test
results

Field
feedback

Abuse
cases

Security
requirements

External
review

Risk
analysis

Risk-based
security
tests

Security
breaks

Static
analysis
(tools)

Risk
analysis

Penetration
testing

27

At the code level, use static analysis tools – tools that scan source code for common
vulnerabilities. Several exist as mentioned below, and rapid improvement is expected in
2004. Code review is a necessary, but not sufficient, practice for achieving secure
software because requirements, architectural, and design defects are just as large a
problem. The choice of programming language also has impact and is addressed in its
own subsection below.

Security testing is essential and is addressed at some length in it own subsection below.
Operations people should carefully monitor fielded systems during use for security
breaks. Attacks will happen, regardless of the strength of design and implementation, so
monitoring software behavior is an excellent defensive technique. Knowledge gained by
understanding attacks and exploits should be cycled back into the development
organization, and security practitioners should explicitly track both threat models and
attack patterns.

Note that risks crop up during all stages of the software life cycle, so a constant risk
analysis thread, with recurring risk tracking and monitoring activities, is highly
recommended. Risk analysis is discussed at greater length below.

Programming Languages
The choice of programming language can impact the security of a software product. The
best programming languages are ones where all actions are defined and reasonable,
features such as strong typing are included to reduce mistakes, memory is managed
appropriately, and where the use of pointers is discouraged. A language that can be
formally verified, such as the SPARK subset of Ada and its associated verification tools
[Barnes], would be even better. Thus languages like C and C++ have inherent
characteristics that can lead to security vulnerabilities. While languages such as JAVA
and C# are better for developing secure software, even better choices exist. Note that the
use of a particular language does not guarantee or deny security: with care and substantial
effort secure applications could in theory be written in C, and insecure applications can
be written in JAVA and C#.

Tools
Several types of tools are available to support producing secure software. These range
from automated tools for verification and validation of formal specifications and design,
to static code analyzers and checkers. Information about automated tools for formal
methods is available at http://www.comlab.ox.ac.uk/archive/formal-methods.html. Some
better known code analysis tools are RATS (http://www.securesw.com/rats), Flawfinder
(http://www.dwheeler.com/flawfinder), ITS4 (http://www.cigital.com/its4), and ESC/Java
(http://www.niii.kun.nl/ita/sos/projects/escframe.html). The usability of static code
analyzers varies. For some, their output can be voluminous (although this may reflect the
poor practices used in writing the code), and the problems flagged can require human
follow up analysis. For example, here is an output from a static analysis tool. This would
almost certainly require a code review and maybe a design review to follow-up.

28

Input.c:5: High: fixed size local buffer
Extra care should be taken to ensure that character arrays that are allocated on the
stack are used safely. They are prime targets for buffer overflow attacks.

Tools used by Microsoft such as PREfast and PREfix [Bush], and SLAM
(http://www.research.microsoft.com) are helping reduce overall defects. According to
Microsoft, PREfix and PREfast have been very effective and caught about 17 percent of
the bugs found in Microsoft's Server 2003 [Vaughan]. The Fluid project has also shown
promising results (http://www.fluid.cmu.edu/). Sun’s JACKPOT project
(http://research.sun.com/projects/jackpot/) and is another tool under development. A
number of additional tools based on compiler technology are expected to become
available in 2004.

Testing
Security testing encompasses several strategies. Two strategies are testing security
functionality with standard functional testing techniques, and risk-based security testing
based on attack patterns and threat models. A good security test plan (with traceability
back to requirements) uses both strategies. Security problems are not always apparent,
even when probing a system directly. So, while normal quality assurance is still essential,
it is unlikely to uncover all the pressing security issues.

Penetration testing is also useful, especially if an architectural risk analysis is specifically
driving the tests. The advantage of penetration testing is that it gives a good
understanding of fielded software in its real environment. However, any black-box
penetration testing that does not take the software architecture into account probably will
not uncover anything deeply interesting about software risk. Software that falls prey to
canned black-box testing – which simplistic application security testing tools on the
market today practice – is truly bad. This means that passing a cursory penetration test
reveals very little about the system’s real security posture, but failing an easy canned
penetration test indicates a serious, troubling oversight.

To produce secure software, testing the software to validate that it meets security
requirements is essential. This testing includes serious attempts to attack it and break its
security as well as scanning for common vulnerabilities. As discussed earlier, test cases
can be derived from threat models, attack patterns, abuse cases, and from specifications
and design. Both white-box and black box testing are applicable, as is testing for both
functional and non-functional requirements. An example tool that uses formal method
concepts to aid testing is JTest™, a Java testing tool. The user writes pre- and post-
conditions and invariants just as in formal methods using program proofing techniques.
But, these are inserted by the tool as assertions and used to guide the automatic
generation of tests that attempt to break them. JTest™ also attempts to generate tests to
raise every possible exception.

The Fuzz testing method is another method of interest. Fuzz testing is a black-box testing
method that tests software applications with random input. The method has proven
effective in identifying design and implementation defects in software. More information

29

about this testing method is available at http://www.cs.wisc.edu/. Another similar method
that has proven effective for testing is the Ballista method. The Ballista method is an
automated, black-box testing method that is particularly suited to characterizing the
exception handling capability of software modules. More information about this testing
method is available at http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/edrc-
ballista/www/. Once again, failure to pass this style of testing should reflect troubling
oversights.

System, user, and acceptance testing provides an invaluable source of data for software
process improvement. Security defects found in tests are defects that escaped the entire
software development process. They can be used to find, fix, and prevent future design
and implementation defects of the same type, as well as similar defects elsewhere in the
software. This topic is discussed further in the Qualification section of this report.

Risk Management
One might say that the most secure computer is one disconnected from the network,
locked in a room, with its keyboard removed. Of course, such a machine is also useless.
Since perfect security appears to be an unattainable goal with today’s technologies,
producing secure software becomes a question of risk management. Security risks must
be identified, ranked, and mitigated, and these risks must be managed throughout the
software product lifecycle.

Risk management involves threat identification, asset identification, and quantitatively or
qualitatively ranking threats to assets. One ranking dimension involves determining what
would happens if the risk came true. What would be the impact in terms of cost,
schedule, loss of reputation, legal exposure, etc? The other ranking dimension considers
the probability of the risk occurring: is the threat easily exploitable? Do many potential
exploiters exist? How much effort would it take for someone to exploit the threat?
Ranking risks by combining (multiplying) the impact and the probability is the common
approach – indeed these are the two elements in most definitions of risk.
During requirements and design tradeoffs must be considered and addressed from a risk
management perspective. Stated simply:
User functionality – Resources required and remaining for security effort
Usability – Security is a hassle
Efficiency – Security can be slow and expensive
Time to market – Internet time is hard to achieve while achieving security
Simplicity – Everybody wants this but security can add complexity
Quality takes care – Quality is necessary for security

Considering the nature and level of threats and applying risk management allows these to
be approached rationally.

 Ballista is a registered trademark of Carnegie Mellon University.

30

A technical method that can be used for risk analysis is threat modeling, described earlier
in this report. Once the risks have been identified and ranked, design, implementation,
and test decisions can be made to manage the risks.
Risks may be mitigated by the selection of various controls (specify, verify, design, and
validate countermeasures to the risk), or risks may be transferred (purchase insurance
against certain risks). Risk management uses a combination of these methods.

Other Considerations
There are other considerations common to most secure software development efforts.
Some of these considerations are listed below:

Authentication, Authorization, Session Management, and Encryption
Authentication and authorization are common problems that face designers of secure
applications. Authentication involves verifying that people are who they claim to be. The
most common way to authenticate involves the use of a username and a password. Other
authentication methods include biometric authentication based on voice recognition,
fingerprint scans, or retinal scans. The problems faced during authentication include
encryption, transmittal, and storage of passwords, session re-playing, and spoofing.
Authentication should be handled using standard protocols and components where
available, and requires special expertise to implement.

Authorization is about determining what resources an authenticated person has access to.
There are standard authorization techniques available that should be used where possible,
such as role-based access and group permissions. Applications should be deeply
concerned with privilege management, especially the accumulation of excess privileges
over time.

Closely related to authentication and authorization are impersonation and delegation,
which allow one server entity such as a web server to assume the identity of a client
entity such as the user of web browser. The main problem faced during impersonation
and delegation is establishing trust in the server. Clients, therefore, should authenticate
servers and limit the server’s ability to act on their behalf.

Session management is of special concern. The HTTP protocol is a stateless protocol.
Web servers respond to each request from a client individually, with no knowledge of
previous requests. This makes interaction with users difficult. It is up to application
designers to implement a state mechanism that allows multiple requests from a single
user to be associated in a “session”. Poor use of session variables to manage state can
lead to security vulnerabilities.

Finally, encryption is of special concern for secure applications. Two areas of concern
here are to use well-known encryption algorithms (no home grown ones), and the
problems with key management. Entire books have been written on the subject, so all we
will say here is that cryptography should be left to experts, application designs must
consider what information needs to be encrypted when, and applications must properly
implement sound key management practices.

31

An example of authentication, authorization, session management, and encryption in use
is to maintain the integrity of a database. Any modification request must be: provable as
coming from the identity claimed, provably unchanged in transit including not destroyed
or duplicated, of legitimate content type, part of a legitimate identity-action pair (have
right privileges), applied as part of an acceptable sequence of actions, responded to with a
response that is provable to the requester to have come unchanged from the database
management system, and the database state must remain unchanged except by controlled
legitimate actions.

Accountability
With the development practices in common use today, it is difficult to distinguish
between malicious code and the defect-ridden code that is normally produced. Although
malicious code stands out and has a better chance of being identified when high-quality
software is being produced, additional steps are needed to ensure that no software
developer inserts malicious code intentionally. Without careful, rigorous control of and
accountability for millions of lines of code, it is not easy to identify which lines of code
have been added when and by whom. Code Signing could help make this possible. Every
developer would use their private key to sign the code they produce. Therefore, every
change to the software could be identified, analyzed, reviewed, and tested, instead of
being put into the application without effective accountability.

Developers tend to have universal rights and authorized access to all parts of their
development systems. This could lead to intentional or unintentional misuse or change of
security functions or other features. Access to critical components or subsystems should
be controlled. For example, nobody other than a knowledgeable person should be allowed
to implement cryptographic algorithms (of course, abiding by the required laws of export
and import restrictions on cryptographic software).

Code Signing and Code Access Authorizations are practices that may promote
accountability, but do not address the issue of malicious code by themselves [McGraw
and Morrisett].

Modifications and Patch Management
The Patch Management subgroup of the Task Force on Security across the Software
Development Lifecycle is addressing issues relating to patch management. The Process
Subgroup is more concerned with the process used for modifications and patch
management.

As patches often get distributed as downloads from the Internet, the download process
itself must be secured with all appropriate methods to guarantee integrity and
authenticity.

As with development, the change process to the software system must be secure.
Implementing patches, adding new features, or implementing new applications within a
system requires that software be added or modified. Most organizations have concurrent
instances of a development system, a test system, and a production system. Configuration

32

and change control across all these systems becomes critical if changes are to be reflected
in all instances of the system, starting from the development system, to the test system,
and to production systems.

Use of Third-Party Software
The use of third-party software (COTS or open-source) poses some difficulties. Although
there is no significant evidence of third-party software being less or more vulnerable, a
process developing secure software must carefully consider the proper use of third-party
software. Users of third-party software must have some means of identifying and
categorizing the trust level of the component they are about to use. The best means of
doing this would be to demand that third-party software be developed using secure
development processes, and be validated using security validation methods.

Third-party software should also include a disclosure of security assumptions and
limitations. A single 'security level' or 'minimum security' is very difficult to define for a
software component that is being deployed in different environments with different
security levels. A key piece of data to have when deciding one's level of confidence is to
assess the quality and content of documentation of security limits and security
assumptions. This is especially important for third-party software, but really applies to all
software – customers should request it.

MANAGEMENT PRACTICES

The importance of the role of management in ensuring that their organizations address
security throughout the software development lifecycle cannot be overstressed. Partially
for this reason, the National Cyber Security Taskforce for Corporate Governance has
been formed “to consider cyber security roles and responsibilities within the corporate
management structure, referencing and combining best practices and metrics that bring
accountability to three key elements of a cyber-security system: people, process, and
technology.”

Since another taskforce is addressing this issue, the discussion here is limited to a listing
of specific management practices.

• Establish organizational policies for secure software development. Policies
help with codifying an organization’s commitment to secure software
development.

• Set measurable improvement goals for developing secure software. Since
improvement without measurable goals is difficult, it is important for
management to set specific, measurable goals. Examples of specific goals are
to reduce vulnerabilities in delivered software by 50% as measured by number
of patches released, or number of vulnerabilities reported.

• Establish leadership roles for security at the organization and at the project
level. Some organizations have had success with roles such as Security
Engineer, Security Analyst, and Security Architect. The Team Software

33

Process for Secure Software Development (TSP-Secure) has a defined role of
a Security Manager on each development project. The responsibilities of a
security manager change during different phases of the software development
lifecycle, and the security manager may not be the same person throughout the
software development lifecycle, but this is the person who always focuses on
security for that project.

• Provide resources and funding for needed training in software engineering
practices, and security practices.

• Provide an oversight function through quality and security reviews of projects.
Encourage reviews by external software security experts.

RECOMMENDATIONS FOR THE DHS
Short Term
The DHS should:

• Provide incentives for using software development processes that can measurably
reduce software design and implementation defects.

• Encourage and fund research to determine the effectiveness of existing best practices
in measurably reducing software security vulnerabilities.

• Set quantifiable goals for reducing overall software defects and for reducing overall
software security vulnerabilities.

• Encourage adoption of those practices deemed immediately useful in producing
secure software.

Mid Term
The DHS should encourage and fund research:

• For secure software development processes that can measurably reduce software
security vulnerabilities.

• To identify, document, and make available new security best practices that can
measurably reduce software security vulnerabilities.

• To encourage evaluation of those practices that seem highly promising in producing
secure software.

Long Term
The DHS should encourage and fund:

• Education and training in best processes to develop secure software.

• Education and training in best practices for development of secure software.

• Research into those practices that have early indications of being promising in
producing secure software.

35

Qualifying Processes and Practices as
Producing Secure Software

PURPOSE

To ensure that future software processes and practices consistently produce secure
products, candidate processes and practices and the products they produce must be
analyzed and tested to verify and validate that, when properly used, these processes and
practices can be relied upon to produce secure products. This section describes the issues
involved in such a qualification effort together with a proposed way to establish short,
intermediate, and long-term efforts to provide a suitable software process and practice
qualification program.

THE PROBLEMS IN QUALIFYING A PROCESS AS PRODUCING
SECURE SOFTWARE

For the United States cyber foundation to be secure, the software that supports that
foundation must be secure. This requires that the processes and practices used to produce,
enhance, and maintain that software be capable of producing secure software and that
these processes and practices be properly used. When this report speaks of “secure
software” it means that there is high confidence but no guarantee that the software is
secure. Verifying that a software process can consistently produce secure software is
challenging for at least seven reasons.

1. Security is a landscape of evolving threats. What may appear to be secure
software today could be shown to be insecure tomorrow.

2. While tracking the ability of a software system to withstand attack provides some
confidence that it is secure, there are no generally accepted ways to prove that it
is. With current methods, we can only prove that it is not secure.

3. The number of tolerable security defects is quite low and verifying that fewer than
such a small number of defects exist in a large program is extremely difficult.

4. Even if secure software had been initially developed, its deployment
enhancement, repair, and remediation must not compromise its security. No
generally accepted ways exist to verify that such software has retained its security
properties.

5. Even after one or more processes had been shown to produce secure software,
these processes and practices must remain effective when used by many people in
many different software organizations and development environments.

6. An extensive and extended data collection effort would be required to obtain
statistically significant evidence that a process consistently produces secure
software.

7. The methods for qualifying the capabilities of the likely number of required
processes and organizations would necessarily be time consuming and expensive.

36

THE SUGGESTED VERIFICATION AND QUALIFICATION STRATEGY

To qualify a process as capable of producing secure software, that process must be used
to develop, enhance, and/or remediate multiple software products and then those products
must be tested or otherwise examined to verify that they are secure. However, while as
mentioned in the Practices section a number of tools exist and they are expected to
improve substantially, no available tools and techniques that can exhaustively test or
otherwise analyze large-scale software products that by themselves can establish with
high-confidence that no security problems exist in the specifications, design, or code.

A potential alternative to testing would be to have knowledgeable professionals inspect
the software to attempt to ensure that it had no security defects. Inspections are generally
used during development of new or enhanced systems and are highly effective. However,
extensive inspections are not generally practical as a way to remediate the large body of
existing software because of the large scale and great volume of the software currently
available and the severe shortage of software professionals capable of conducting such
security inspections. While this inspection approach cannot quickly or economically
produce the high level of confidence desired, it is the best alternative available today.

The inspection problem is best illustrated by considering the enormous volume of
material to be reviewed to verify that the design and implementation of even a moderate-
sized one million line-of-code (MLOC) program is secure. Just to achieve the level of
security in the best of today’s widely-used software, software professionals would have
to study 40 pages of source program listings for every 1 KLOC program module and miss
at most one single security design or implementation defect. To achieve a ten-time
security improvement, or a level of 100 such defects in a 1 MLOC program, inspectors
would have to miss at most one such defect in 400 pages of source listings. However,
products with 100 security defects would not likely meet any reasonable definition of
security. Furthermore, for a level of 10 defects in a 1 MLOC program, the inspectors
would have to miss at most one such defect in 4,000 pages of source program listings.
Since this level of quality does not seem widely achievable, the inspection approach does
not appear to be generally practical as a widely used verification method for legacy
systems. To the extent that the security-critical code can be so designed that it is isolated
into much smaller code clusters, the inspection strategy becomes more practical.

The third alternative approach is to have development teams and professionals measure
and manage their software processes and products so that they improve to where the
likelihood of having a single design or implementation defect in each 1 KLOC program
module is less than 1 in 100. This approach is currently being used on a limited scale and
suitably trained groups now routinely use these methods to produce software with an
average of about 60 discovered functional design and implementation defects per MLOC
or 6/100 defects per KLOC [Davis]. One third of these teams have had no defects found
in their delivered products. Initial data also show that formal methods are achieving
comparable quality levels [Hall 2004]. While these data are mostly for functional defects,
the methods could be equally applicable to security defects, as long as the producers were
able to recognize security design and implementation defects.

37

Security defects, however, concern security properties such as the confidentiality and
integrity of a system and these generally emergent properties are not always detectable by
looking at parts of the system. Current software quality methods were generally
developed for functional defects that tend to be feature-oriented and somewhat localized.
Thus, special analysis techniques are required and the best of these can involve
disciplined development, testing, and evaluation processes and formal specification and
design methods.
In light of these facts, the suggested verification strategy is as follows:

1. Have the developers and maintainers of candidate secure software products use
processes and practices that have been shown to consistently produce low defect
software.

2. To consistently follow such processes and practices, all producers and maintainers
of such software must be adequately trained and so managed, supported, and
coached, so that they can consistently maintain the required level of personal and
team discipline.

3. These development teams and professionals must measure and manage their
software processes so that they improve to where the likelihood of having a single
design or implementation defect in each 1 KLOC program module is less than 1
in 100.

4. At the specification and design levels use the best available methods for
ascertaining the emergent security properties of the software.

5. The development teams must track and analyze every security defect found in
every product produced by every team member to understand why and how that
defect was injected, where similar defects might remain in the product, and how
to most efficiently find and fix all such defects.

6. When these candidate secure products are fielded, all newly-discovered
vulnerabilities must be tracked to the product versions and the modules where
they were found, the practices used to develop those modules must be identified,
and the flaws in the process that permitted those defects to be entered and/or
missed must be identified and a process fix developed and analyzed to ensure it
has no negative impacts elsewhere. The teams and team members then must
adjust their production processes both to prevent and to find all similar future
defects.

7. The process includes how security defects are repaired and the fix rapidly
disseminated to the product users, involving the immediate defect and all others
of a similar nature that are identified as part of the process.

8. To ensure the continued integrity and increasing merit of qualified processes and
practices, process data must be gathered and retained on every qualified use of the
process and these data must be used by designated process reviewers to qualify
these products. The resulting qualification records must include data on the
producers; who used the process, how they used the process, how they were
trained and prepared to use the process, and the environment in which the process
was used. Data must also be available on the steps used to produce and verify the
quality and security of the product and on the training and qualification of the
analysts, reviewers, and testers. These records must be maintained so that, should

38

a qualified secure product be subsequently found to have security problems, the
proper actions could be taken.

9. If it was found that the process was improperly used, the training and qualification
of the producers, coaches, and designated reviewers should be assessed and
adjusted. If improper process use was a persistent problem, the records of the
producers, coaches, and designated reviewers should be reviewed and actions
taken to revoke any qualifications that were no longer appropriate. Action should
also be taken to review the process history to decide whether the process could be
adequately repaired or if it should be disqualified.

Since this strategy must initially be
implemented with unqualified processes and
practices, various levels of security qualification
must be used. This has been the case with the
Common Criteria whose experience should be
carefully reviewed for lessons including the
reasons for the reputed delegable
meaningfulness of its Levels 1-4 and for its
reputed meaningfulness at higher Levels 5-7.
The two most basic levels could be as follows.

The Initial Q ualification Security Level
The software process and its resulting products
meet all (or most of) the requirements defined in
this document and one or more of the listed best
practices were used in the development work.
All initial security qualifications should be for a
specified and limited time and the qualification
should lapse if data are not provided to
demonstrate the effectiveness of the process for
producing secure software.

The Fully Qualified Security Level
The software process and the products it
produces meet all of the requirements listed in
this document and have been successfully used in a sufficient number of cases to provide
a high level of confidence that the process produces secure software.

An example, in addition to the Common Criteria, is BITS – a non-profit industry
consortium of 100 of the largest financial institutions in the United States that focuses on
issues related to security, crisis management, e-commerce, payments, and emerging
technologies. Aware of antitrust restrictions, BITS developed voluntary security criteria
for software providers and a mechanism to test those products to certify compliance
offering a product certification mark for those products that met the defined criteria. The
BITS Product Certification Program has had limited effect in terms of changing the way
the software industry develops more secure software. After having criteria available in

Deciding One’s Level of
Confidence in a Product’s

Security
Consider all the evidence including:
1. The quality and history of the

people who produced it
2. The characteristics and history

of the kind of process used to
produce it and its qualification
level

3. The environment in which it
was produced

4. Data on the quality and
fidelity of use of the
production process for this
piece of software

5. Characteristics of the software
itself and results of tests and
analyses of it

6. Data on the execution history
of the software itself

7. Data on the design security
assumptions and security

39

2000-2001, only two products are listed as being certified as of March 2004.
Nevertheless, the question arises: could DHS and other government agencies support
sector product certification efforts to permit critical infrastructure sectors to have security
requirements without violating anti-trust restrictions?

As experience is gained and as the need arises, additional qualification levels will almost
certainly be needed.

In principle, the strategy enumerated here is to improve the best existing processes, test
and evaluate the products produced, qualify the processes that produced the products, and
continue to improve the processes. The box on the right lists some of the factors to
consider in evaluating the security of a software product. With current technology, one
should not depend on any single factor, but rather consider the combined implications of
all of the available evidence.

PROMISING QUALIFICATION TECHNIQUES

In addition to the steps above, complementary means exist for developing and using
qualification evidence. Four areas currently appear sufficiently promising to warrant
further study: evaluating available practices, surrogate measures, stress testing, and
formal security proofs.

Evaluating Available Practices
As described elsewhere in this report, several security processes and practices are
currently available that would, if widely used, significantly improve the security of
software products. There are also several promising practices that appear likely to
substantially improve the security of software products. To facilitate widespread use of
the more effective of these processes and practices, those organizations that own and
support software products that are currently under widespread security attack should test
the available and most promising security practices listed in the practices section of this
document. To evaluate these test results, these organizations should establish
measurement programs that are consistent with that described in the Suggested
Verification and Qualification Strategy section of this report. As data on these security
tests become available, the results should be published and distributed and the DHS
should urge software organizations to adopt those practices that are shown to be effective.

Surrogate Product Measures
With no way currently known to directly measure the security of a software product,
identifying one or more surrogate measures may be possible. A surrogate measure of a
product or process would produce data that correlated with the security properties of the
products produced with the process. A potential example surrogate measure would be the
number of selected types of design and code defects found during that product’s system
testing. Since it has been shown that a product’s system test defects correlate with the
number of defects found in that product by its users, it is possible that the defects
responsible for security flaws would also correlate at least with selected types of system
test defects [Humphrey, page 171]. With the growing volume of data on product security
vulnerabilities and the potentially large volume of data available on the software

40

production process, with proper controls for variation of circumstances such a surrogate
correlation could likely be quickly ascertained.

Product Security Testing
A number of tools have been developed for static and dynamic security testing of
software products. While no such tools are known to comprehensively identify all
security vulnerabilities in software products, they could produce surrogate data that might
correlate with at least some categories of vulnerabilities. The software industry should
test any such potentially promising tools to see if they could provide surrogate data of
this type.

Formal Security Proofs
Another possibility is formal analysis and proofs regarding security properties. This
approach is advocated in the Common Criteria and long in use in the research
community. It is rare but not unknown in software production practice [Hall 2002]. While
formal techniques for dealing with security properties exist and should be used where
appropriate, these methods are similar to many other software methods in that their
effectiveness depends on the skill and discipline of the practitioner.

RECOMMENDATIONS FOR DEPARTMENT OF HOMELAND SECURITY ON
SOFTWARE PROCESS QUALIFICATION

While a completely satisfactory solution to these verification and qualification problems
will likely not be available for several years, there are a number of immediate steps that
could be taken to significantly improve the situation. These steps are described in the
following sections on short-term, intermediate-term, and long-term recommendations.

Short-Term Recommendations
The three short-term recommendations are:

The DHS should issue a recommendation that all organizations developing software
adopt as rapidly as possible those practices currently deemed in this report to be
immediately useful for producing and deploying secure software.

The DHS should further request that those organizations that have software products with
a significant annual volume of vulnerability discoveries conduct measured tests of those
security practices deemed to be immediately useful and highly promising. This testing
should follow the first eight steps listed in The Suggested Verification and Qualification
Strategy section of this report. While all organizations should be encouraged to test the
suggested methods, only those with a significant vulnerability history would likely have
the data necessary for a statistically sound before-and-after verification of security
practices.

Organizations with suitable data should be asked to work with USCERT to determine if
the number of selected types of system test defects in a product are a useful surrogate
measure for the number of security vulnerabilities subsequently found in that product.

41

Intermediate-Term Recommendations
The three intermediate-term recommendations are:

The DHS should launch a measurement and evaluation program to determine if any
available tools or testing methods could be used to generate surrogate data that indicate
the relative security of a software product.

The DHS should assess the rate of improvement in the security of the US cyber
infrastructure and work with the US software industry to define the measures and
establish measurable security goals. It should then track performance against these goals
on an annual basis.

The DHS should initiate a qualification program to measure and evaluate software
products and to qualify the software practices, processes, people, and organizations that
produced them as capable of producing secure programs. It should also establish the
criteria and practices to qualify program products as having met all of the conditions to
be qualified as secure. This program should, over time, establish one or more
qualification levels that are consistent with the degree of verification available and
achieved by the qualified entities.

Long-Term Recommendations
The three long-term recommendations are:

The DHS should track and assess the measurement and analysis programs recommended
in this report and qualify those processes and methods found to be highly effective at
producing secure software products.

The DHS should encourage and fund research to identify, document, and make available
further security software production processes, testing tools, and best security design and
implementation practices. Several such potential processes and best practices are listed in
the practices section of this report.

The DHS should encourage broader coverage of security issues and practices in all
computer-related academic teaching and research programs.

43

Organizational Change
For organizations desiring to improve their ability to produce secure software, this
section discusses the many issues involved in organizational change and the body of
knowledge and techniques addressing them. As previously stated, the cost in terms of
resources and time, and the required organizational courage and discipline needed, can be
discouraging. Undoubtedly, however, the capability to produce secure software
necessitates an organization introduce, use, and continually improve software processes,
technology, practices, and products. Consequently in this section, we address the issues
involved in such organizational change.

There is a wealth of scholarly and popular press literature describing the challenges of
organizational change, – a search of Amazon.com for “organizational change” yields
over 32,000 results. These books describe techniques and experiences – the costs of
failed change efforts and the considerable payoffs from successful ones. Such lessons
learned are a good place to learn about organizational change, but where does one start
among these 32,000? What we present here is a summary of some of the more notable
and proven approaches to accelerate the adoption and improvement of the processes and
practices and recommended references related to them.

Two conditions must exist before organizational change.
• Commitment to the change
• Ability to change

Without both, even a great technology will not be adopted. On the other hand, once the
underlying issues are understood, people, teams, and organizations often participate
favorably in a well crafted approach. In the following sections, we layout the issues and
discuss some of the “right” approaches. The interested reader can find a wealth of
detailed information in the references provided below.

WHAT TO EXPECT

Figure 4 depicts a typical cycle of change for an organization undergoing the introduction
and use of new processes or practices [Weinburg]. The phase “Old Status Quo” in Figure
4 denotes the situation prior to attempted change. Here, processes are working – for good
or bad. In the scenario of major process improvement that we are discussing here, a new
stage, “Instability” begins when someone introduces a novel idea for improvement,
involving significant changes in day-to-day practices and behaviors. If it does not handle
this stage appropriately and carefully, an organization is likely to abandon its
improvement effort. The effort needs visible support by management and a team of
change agents with the skill for steering the effort through its ordeals. Key activities of
the change agents and management in this stage include listening, demonstrating
empathy, being helpful, and providing plentiful amounts of consistent information
addressing individuals’ and groups’ concerns. Without these, individuals – and
organizations – can easily return to the “Old Status Quo”. Management can easily see
efficiency being adversely affected as people struggle to learn and incorporate new

44

practices and processes. They must recognize this, however, as a natural side effect of the
initial learning process – the performance payoff will be realized in later stages.

Figure 4 -Representative cycle of organizational change showing how performance can be
impacted by the introduction and use of new practices

Organizations that make it through “Instability” move into a stage of performance known
as “Integration and Practice”. With this stage, performance begins to improve, but
patience is still essential. Personnel have overcome their initial uncertainties, and start to
improve their use of the new process or practice. Management needs to ensure an
environment for continuing improvement with people allowed to not know everything
about the new process or practice, and their questions encouraged and answered.

Finally, the organization moves into the stage of the “New Status Quo”. Practice brings
still more improvement, appropriate information flows through the organization, and
overall, the new practices and processes are in place and working well. To optimize
performance, management must grant people permission to be honest, and to explore and
improve their newly acquired skills. After a period of stability and incremental
improvement the organization will be ready to undertake its next major change.

These stages clearly show what all experienced change agents know – change is not
instantaneous except in the most trivial of cases. Significant improvement comes from
acceptance by individuals and significant change in their day-to-day behaviors, and
significant change takes time, persistence, flexibility, and special skills.

Time

Performance

Old
Status
Quo

Instability

Integration &
Practice

New
Status
Quo

45

TOOLS FOR CHANGE

Successful change agents rely on a body of knowledge and a suite of techniques for
supporting the movement of the organization through the stages of Figure 4. The change
agent’s toolkit should include, at a minimum, a thorough understanding of the following
components of this body of knowledge and insight into how to use them:

• Adopter type categories and how to use them in organizational change [Rogers]
[Moore 2002]

• Characteristics of adoptable technologies [Rogers]
• Stages of learning and commitment [Patterson]
• Factors of adoption [Fichman]
• Value networks [SEI]

The basic premises underlying these concepts are

• People respond differently to change
• Successfully adopted changes tend to exhibit a similar set of characteristics
• Learning and commitment to new practices follows a predictable pattern of stages
• People move through these stages at different speeds
• Change involves a network of influencers and stakeholders each of whom must

individually understand and be prepared to support their role in the process.

Several additional references are included for those that wish to explore further.
Introductory books are [Kotter] and [Beitler]. Intermediate books are [Christensen]
[Moore 1999] and [Fench]. [Senge] is more advanced but still accessible. Coming from
the study of technology transfer but quite encompassing, [Rogers] is a classic.

Organizational change is challenging, but with the right skills and approach to the change
process the pay off can be quite substantial – and the same can be true along the path
towards secure software.

47

Recommendations
In the prior sections of this report, we noted the problem of producing secure software is
both a software engineering problem and a security-engineering problem. The principles
for producing secure software have been known for some time. Many people involved
with producing secure software are aware of the principles, as well as the practices
described in this and other documents. Why do people not follow these principles and not
use these practices consistently? In addition to principles and practices, a need exists for
operational processes that help apply these principles in practice, provide a supportive
infrastructure and environment, and a measurement system to manage and control both
security pursuing processes and secure products.
As the Software Process Subgroup considered the seemingly unconnected facts on the
requirements for and the capabilities of processes to produce secure software, a path to be
recommended emerged. The Software Process Subgroup has confidence that following
this path could lead to producing more secure software, and as a byproduct, more reliable
software. The recommendations that constitute the path are highlighted in boldface. The
recommendations are clustered according to the expected timing of their implementation
into short-term, mid-term, and long-term recommendations.

SHORT-TERM RECOMMENDATIONS

First, a very low design and implementation defect rate software production process is a
necessity. As described earlier in this report, such processes exist today. Not surprisingly,
they tend to have characteristics that are substantially different from the software
development processes in common use. The answer is not to just keep doing more of the
usual. Therefore, to start along the path, every organization desiring to produce secure
software, whether a software vendor, an organization developing software for internal
use, or developing open source software, should use a process that can predictably
produce software with very low specification, design, and implementation defects –
less than 0.1 specification, design and implementation defects per thousand lines of
new and changed code delivered.

Given a process that produces high quality software, the next recommendation is to make
risk management central to decision making. This requires security expertise that
covers all security aspects of the system under development. Since the security expertise
must be broad and deep, expert help may be needed to identify and manage security risks.
The next areas of concern are product specification and design. Security must be an
integral consideration during product specification and design. Apply formal methods to
specification and design of security aspects. Define the security properties of the
software. Analyze and review specifications and designs for security. A key element
of making this feasible is to design the software so security critical aspects are
concentrated to a limited portion of the software. The design should be as simple as
possible – possibly sacrificing efficiency – and must be restricted to structures and
features that are "safe" and preferably can be analyzed. The design must not assume that

48

the software cannot be broken and should ensure defense in depth or tolerance. This
and other security principles should be given close attention.
A programming language with significantly fewer possibilities for mistakes than C
or C++ should be used where possible. The programming language should be fully
defined, catch all possible exceptions, and have other mistake reducing characteristics
such as strong typing – and preferably safe typing.
Static analysis should be used to find known kinds of coding defects. Over time this
analysis should become compulsory.
Security testing must be performed including serious attack efforts. Testing should take
advantage of formal specifications and design.
Using suitable consideration, software producers should also adopt other practices
deemed useful in this report.
Lessons can be learned from the characteristics and causes of security vulnerabilities
found throughout development, testing, and after release. Organizations can improve
from their own and from others’ experiences, good or bad. The products produced and
process used must be constantly monitored and root causes of defects determined
and reduced.

To have a reasonable chance of success, top management, indeed management at all
levels, must have a sustained and focused priority of producing secure software.
Adequate resources must be available, outside expertise must be there when needed, and
a quality culture must be sustained. Trained, motivated, persistent, disciplined, proficient
and trustworthy personnel follow an agreed to plan and measure progress.
The recommendations so far mainly address development of new software. Just as
important are practices and processes for maintenance, fixes, and patch release and
management. Of particular concern are configuration management processes. Changes to
existing software should follow a rigorous change and configuration control process.
Another area of concern is the use of COTS or open-source software. There are no
significant studies that show open-source and COTS software has fewer or more security
vulnerabilities. Very often, purchasers and administrators of a software product are not
aware of the use of third-party software in the products they are using. Thus, they may
not know that they have a security issue if the producers of the third-party software issue
a warning or patch. In addition, producers of a software product may rely on the quality
of third-party software without ensuring the process that produced it was adequate.
Thus software vendors should require that third-parties developing software adopt
processes and practices deemed useful in this report, or software vendors must validate
third-party software before incorporating it into their products. At a minimum, they
should disclose what third-party software, including open source software, is used in their
product.

Software vendors should produce a security guide or document listing the current
assumptions and level of security features used such as password enforcements as well as
recommendations on how this should be configured or could be possibly enhanced.
Finally, given the short amount of time that this taskforce had to write this report, only a
limited number of participants could be reached to provide input – even within the

49

organizations involved. Certainly, more knowledge and experience exists and should be
utilized.

Thus the DHS should
• encourage every software organization, whether a software vendor, an organization

developing software for internal use, or developing open source software, to adopt as
rapidly as possible processes that produce software that has almost no specification,
design, and implementation defects

• encourage software organization to incorporate in-depth security expertise in their
software development lifecycle

• request that those organizations that have software products with a significant annual
volume of vulnerability discoveries conduct measured tests of those security practices
deemed to be immediately useful and highly promising.

• ask organizations with suitable data to work with USCERT or other entity such as IT-
ISAC to determine useful surrogate measure for the number of security vulnerabilities
found in that product after product release.

• identify additional individuals and organizations working on processes to produce
secure software, and request they review this report and suggest enhancements.

MID-TERM RECOMMENDATIONS

For many, the short-term will not be enough time to achieve adequate levels of security.
Software producers should continue to relentlessly improve the security of their products
and their processes with emphasis on specification and design. Much current software
will never have good security properties without substantial redesign. Software
producers must recognize systems with unacceptable architectures and designs and
re-architect and redesign them with proper characteristics for security, using
quality software development processes.

• This report has proposed the requirements for a process for producing secure
software, as well as qualification and verification of both the process used to develop
a product, as well as the product itself. However, research and experience data are
needed to further validate these, as well as to get knowledge about the
appropriateness of different methods.

• The DHS should launch a measurement and evaluation program to determine
effectiveness of secure software development processes, leading to certification of
processes deemed to be capable of producing secure software.

• The DHS should ask USCERT or other entity such as IT-ISAC to work with software
producers and others to evaluate process and practice benchmarks to establish a
baseline against which improvement could be measured.

• The DHS should assess the current state of the US Cyber software infrastructure,
work with the software industry to establish measurable security goals on an annual
basis, and track performance against these goals.

50

LONG TERM RECOMMENDATIONS

Longer term recommendations all involve the DHS, and have been categorized as
follows:

Certification

Certification programs like Common Criteria and ITSEC to some degree address
verification of released software. Levels 5, 6, and 7 of the Common Criteria have a
desirable emphasis on showing the design provides the desired security properties. It
could be said that they even verify a subset of the software process as making use of
methods deemed to produce lower defect software. However, the fact remains that these
levels are rarely used and security incidents are increasing, not decreasing.
Thus the DHS should track and assess the measurement and analysis programs
recommended in this report and the DHS should initiate certification of those
processes and methods found to be highly effective at producing secure software
products.

Education and Training

Today, most universities offering courses in security tend to focus on research oriented
subjects such as cryptography, and concentrate mainly on the theory of security
properties such as confidentiality and integrity. While this is good for future researchers,
more emphasis is needed to train and educate at the practitioner level. Even programs that
focus on the practitioner, such as those offered by some community colleges, are
sometimes hit-and-miss. For example, buffer overflow prevention might or might not be
taught in a programming class. A holistic approach to secure software development for
practitioners is rarely found.

The Software Process Subgroup endorses the Education Subgroup recommendation that
the DHS and others should encourage and fund universities teaching computer
science or closely related subjects to offer courses and do research in Secure Software
Development Processes. It should particularly move to enhance existing programs in this
area. Analogous to medical schools where practicing medical doctors teach medical
students, software security experts and practitioners should help teach computer science
and software engineering students. These teachers could be recruited from organizations
and companies using certified processes to develop secure software.

Accountability

The DHS should work with selected software producers to conduct experiments in
implementing code-based authorizations. The purpose of the experiment would be to
determine the effectiveness of limiting software developer ability to modify any part of a
system, thus limiting unintended or malicious damage to critical components of the
system.

The results of both experiments and experiences should be analyzed and should be made
publicly available.

51

Evaluating New Technologies

Software technologies and applications have changed significantly in the past ten years
and will do so again in the next ten. Islands of systems within a company are now
connected via the Internet to systems of other companies. Firewalls, which were the
preferred method to protect systems from possibly malicious access live under the
paradigm that everybody within the firewall is “good” and everybody outside is “bad”.
With the possible increasing use of web services, this paradigm will vanish and will need
to be enhanced or replaced by web services security, perhaps involving SAML tickets
and XML encryption.

This is just one example of the rapidly changing landscape in software security. New
technologies will bring new opportunities as well as new challenges. New technologies
will almost certainly impose ever more stringent requirements on tolerable software
design and implementation defects and the processes to produce secure software. A
coordinated, sustained, ongoing effort will be needed to study the impact of new
technologies on software processes for producing secure software and on legacy
products.

Given the limited time the task force had to write this paper, it is almost certain that the
task force ignored other available development processes and best practices for producing
secure software. Therefore, the DHS should encourage and fund research to identify,
document, and make available further security software production processes,
testing tools, and security design and implementation practices, as well as other
development practices for secure software. Several such potential practices are listed in
the “Practices” section of this report.

52

CONCLUSION

A path exists towards producing secure software. A few organizations are quite well
along this path and show that traveling it is possible. The path involves:

• Using an outstanding, exceedingly low-defect software engineering process and
relentlessly improving it while recognizing security properties are emergent
properties of systems and the central place of requirements and design

• Incorporating sound, in-depth security expertise, practices, and technology
• Providing the expert management to bring the resources, organization, discipline,

flexibility, and persistence
• Continuing to relentlessly improve

The Software Process Subgroup has confidence that following this path will lead to
producing more secure software.

53

References
[ACM] ACM Transactions on Information and System Security, Association for
Computing Machinery.
[Anderson] Anderson, Ross J., Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley and Sons, 2001.
 [Barnes] Barnes, John. High Integrity Software: The SPARK Approach to Safety and
Security, Addison Wesley 2003
[Beitler] Beitler, Michael A., Strategic Organizational Change Practitioner Press
International; January 17, 2003.
[Boehm], Boehm, Barry, and Richard Turner, Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley 2003.
[Broadfoot] Broadfoot, G. and P. Broadfoot, “Academia and Industry Meet: Some
Experiences of Formal Methods in Practice,” Proceedings of the Tenth Asia-Pacific
Software Engineering Conference, Chiang Mai, Thailand, December 2003, IEEE
Computer Society.
[Bush] Bush, W.R., J.D. Pincus, and D.J. Siela_, “A Static Analyzer for Finding
Dynamic Programming Errors,” Software Practice and Experience, vol. 30, June 2000
[Christensen] Christensen, Clayton M., The Innovator's Dilemma. HarperBusiness;
January 7, 2003.

[Common Criteria Part 1] Common Criteria Project, Common Criteria for
Information Technology Security Evaluation Part 1: Introduction and general
model, Version 2.1, CCIMB-99-031, August 1999.

[Common Criteria Part 2] Common Criteria Project, Common Criteria for Information
Technology Security Evaluation Part 2: Security Functional Requirements, Version 2.1.
CCIMB-99-031, August 1999
[Davis] Davis, Noopur, and Mullaney, Julia, “The Team Software Process in Practice: A
Summary of Recent Results,” Technical Report CMU/SEI-2003-TR-014, September
2003.
[Deming] Deming, W. Edward. Out of the Crisis. Cambridge, MA: MIT Center for
Advanced Engineering, 1986.
[Fench] French, Wendell L. Organization Development and Transformation: Managing
Effective Change. McGraw-Hill/Irwin; 5th edition July 13, 1999.
[Fichman] Fichman and Kemerer, “Adoption of Software Engineering Process
Innovations: The Case of Object Orientation,” Sloan Management Review, Winter 1993,
pp. 7-22.
[Goldenson] Goldenson, Dennis R. and Gibson, Diane L. “Demonstrating the Impact and
Benefits of CMMI”, Special Report CMU/SEI-2003-SR-009, The Software Engineering
Institute, Carnegie Mellon University, 2003
[Hall 2002] Hall, Anthony, and Roderick Chapman, Correctness by Construction:
Developing a Commercial Secure System, IEEE Software, January/February 2002,
pp.18-25.

54

[Hall 2004] Hall, Anthony, and Rod Chapman. “Correctness-by-Construction.”. Paper
written for Cyber Security Summit Taskforce Subgroup on Software Process. January
2004.
[Hayes] Hayes, W. and J. W. Over, “The Personal Software Process (PSP): An Empirical
Study of the Impact of PSP on Individual Engineers.” CMU/SEI-97-TR-001,
ADA335543. Pittsburgh, PA: The Software Engineering Institute, Carnegie Mellon
University, 1997.
[Herbsleb] Herbsleb, J. et al. "Benefits of CMM-Based Software Process Improvement:
Initial Results." CMU/SEI-94-TR-013, Software Engineering Institute, Carnegie Mellon
University, 1994.

[Hogland] Hoglund, Greg, and Gary McGraw. Exploiting Software: How to
break code. Addison-Wesley, 2004

[Houston] Houston, I., and S. King, "CICS Project Report: Experiences and Results from
the Use of Z," Proc. VDM 1991: Formal Development Methods, Springer-Verlag, New
York, 1991.
[Howard 2003] Howard, M., and S. Lipner, "Inside the Windows Security Push," IEEE
Security & Privacy, vol.1, no. 1, 2003, pp. 57-61.
[Howard 2002] Howard, Michael, and David C. LeBlanc. Writing Secure Code, 2nd
edition, Microsoft Press, 2002
[Humphrey 2000] Humphrey, Watts S. Introduction to the Team Software Process,
Reading, MA: Addison Wesley, 2000.
[Humphrey 2002] Humphrey, Watts S. Winning with Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.
[IEEE] IEEE Security and Privacy magazine and IEEE Transactions on Dependable and
Secure Computing. Institute for Electrical and Electronics Engineers Computer Society.
[ISO] International Standards Organization, International Standard ISO/IEC 15408-
3:1999 Information technology – Security techniques – Evaluation criteria for IT
security.
[Jacquith] Jacquith, Andrew. “The Security of Applications: Not All Are Created
Equal.” At Stake Research.
http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf
[Jones] Jones, Capers. Software Assessments, Benchmarks, and Best Practices, Reading,
MA: Addison-Wesley, 2000.
[King] King, Steve, Jonathan Hammond, Rod Chapman, and Andy Pryor “Is Proof More
Cost-Effective Than Testing?” IEEE Transactions of Software Engineering, VOL. 26,
No. 8, August 2000.
[Kotter] Kotter, John P., Leading Change. Harvard Business School Press; 1st edition
January 15, 1996.
[Leveson] Leveson, Nancy G. Safeware: System Safety and Computers, Addison-
Wesley, 1995.
[Linger 1994] Linger, Richard. “Cleanroom Process Model,” IEEE Software, IEEE
Computer Society, March 1994.
[Linger 2004] Linger, Richard, and Stacy Powell, “Developing Secure Software with
Cleanroom Software Engineering”. Paper prepared for the Cyber Security Summit Task
Force Subgroup on Software Process, February 2004.

55

[McGraw 2003] McGraw, Gary E., “On the Horizon: The DIMACS Workshop on
Software Security”, IEEE Security and Privacy, March/April 2003.
[McGraw and Morrisett] Gary McGraw and Greg Morrisett, “Attacking Malicious Code:
A report to the Infosec Research Council”, submitted to IEEE Software and presented to
the Infosec Research Council. http://www.cigital.com/~gem/malcode.pdf
[McGraw 2004] McGraw, Gary, “Software Security”, IEEE Security and Privacy, to
appear March 2004

[Mills] H. Mills and R. Linger, “Cleanroom Software Engineering,” Encyclopedia of
Software Engineering, 2nd ed., (J. Marciniak, ed.), John Wiley & Sons, New York, 2002.

[Moore 1999] Moore, Geoffrey A., Inside the Tornado : Marketing Strategies from
Silicon Valley's Cutting Edge. HarperBusiness; Reprint edition July 1, 1999.
[Moore 2002] Moore, Geoffrey A. Crossing the Chasm. Harper Business, 2002.
[NASA] Formal Methods Specification and Verification Guidebook for Software and
Computer Systems: Volume 1: Planning and Technology Insertion. Available at
http://www.fing.edu.uy/inco/grupos/mf/TPPSF/Bibliografia/fmguide1.pdf
[Naur] Naur, P. "Understanding Turing's Universal Machine - Personal Style in Program
Description", The Computer Journal, Vol 36, Number 4, 1993.
[Neumann] Neumann, Peter, Principles Assuredly Trustworthy Composable
Architectures: (Emerging Draft of the) Final Report, December 2003
[Patterson] Patterson, Robert W. & Conner, Darryl R. “Building Commitment to
Organizational Change.” Training and Development Journal, April 1983, pp. 18-30.
[Payne] Payne, Jeffery E. “Regulation and Information Security: Can Y2K Lessons Help
Us?” IEEE Security and Privacy. March/April 2004
[Pfleeger] Pfleeger, Shari Lawrence, and Les Hatton, "Investigating the Influence of
Formal Method", IEEE Computer, Volume 30, No 2, Feb 1997.
[Powell] Prowell, S., C. Trammell, R. Linger, and J. Poore, Cleanroom Software
Engineering: Technology and Process, Addison Wesley, Reading, MA, 1999.
[Rogers] Rogers, Everett. Diffusion of Innovations. Free Press, 1995.
[Saltzer] Saltzer, Jerry, and Mike Schroeder, “The Protection of Information in Computer
Systems”, Proceedings of the IEEE. Vol. 63, No. 9 (September 1975), pp. 1278-1308.
Available on-line at http://cap-lore.com/CapTheory/ProtInf/.
[Schneier] Schneier, Bruce. Secrets and Lies: Digital Security in a Networked World,
John Wiley & Sons (2000)
[SEI] SEI, Technology Transition Practices, http://www.sei.cmu.edu/ttp/value-
networks.html.
[Senge] Senge, Peter M., The Fifth Discipline. Currency; 1st edition October 1, 1994.
[Spivey] Spivey, J.M. The Z Notation: A Reference Manual, 2nd Edition. Prentice-Hall,
1992.
[Vaughn] Vaughn, Steven J. “Building Better Software with Better Tools”, IEEE
Computer, September 2003, Vol 36, No 9.
[Viega] Viega, John, and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way, Reading, MA: Addison Wesley, 2001.
[Walsh] Walsh, L. "Trustworthy Yet?" Information Security Magazine, Feb. 2003.
See http://infosecuritymag.techtarget.com/2003/feb/cover.shtml
[Weinberg] The Virginia Satir change model, adapted from G. Weinberg, Quality
Software Management, Vol. 4: Anticipating Change, Ch 3.

56

Software Process Subgroup
Task Force on Security across the Software Development Lifecycle
National Cyber Security Summit
March 2004

Edited by Samuel T. Redwine, Jr. and Noopur Davis

C-1

Appendix C
Patch Management Subgroup Report

IMPROVING THE PATCH

MANAGEMENT PROCESS

Security across the Software Development Lifecycle Task
Force

Patch Management Subgroup

March 12, 2004

ii

Copyright © 2004

Permission is granted for free usage of all or portions of this document including
for derived works provided proper acknowledgement is given and notice of its
copyright is included.

NO WARRANTY

THIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. THE EDITORS,
AUTHORS, CONTRIBUTORS, COPYRIGHT HOLDERS, MEMBERS OF CYBER
SECURITY SUMMIT SECURITY ACROSS THE SOFTWARE DEVELOPMENT
LIFECYCLE TASK FORCE, THEIR EMPLOYERS, THE CYBER SECURITY
SUMMIT SPONSORING ORGANIZATIONS, ALL OTHER ENTITIES
ASSOCIATED WITH THE REPORT, AND ENTITIES AND PRODUCTS
MENTIONED WITHIN THE REPORT MAKE NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. NO WARRANTY OF ANY KIND IS MADE WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of
the trademark holder.

Any comments on this draft should be sent to Eric Guerrino at
eguerrino@bankofny.com

Foreword
The Patch Management Subgroup within the Security Across the Software Development
Lifecycle Task Force of the Cyber Security Summit produced this report. The Subgroup is co-
chaired by Eric Guerrino (The Bank of New York) and Monique Shivanandan (BellSouth). The
Task Force and its Subgroups were established December 2-3 in San Jose California at the Cyber
Security Summit sponsored by the Department of Homeland Security (DHS), the Business
Software Alliance (BSA) and the Information Technology Association of America (ITAA). The
effort to produce this report is part of the DHS-sponsored public/private sector partnership. The
Subgroup’s life should extend beyond the production of this report, but its specific activities may
vary.

Patch management Subgroup Chairpersons:

Eric Guerrino, CISSP... The
Bank of New York
Monique Shivanandan ... BellSouth

The chairpersons want to thank every subgroup and task force member for their insight and
contributions but especially wish to recognize the significant contributions and assistance of
Scott Culp. We also express our appreciation to the staff and members of the Business Software
Alliance for their support and helpful suggestions.

Patch Management Subgroup members:

Scott Culp...
..Microsoft Corp.
Fred Cohen...
..Burton Group
Keith T. Schwalm, CISSP.. Good
Harbor Consulting
Erik Mettala ...
..Network Associates
Malcolm Harkins ...
..Intel
Leslie Beach...
..SRA International
Allen Ott...
..Lockheed Martin

Security Across the Software Development Lifecycle Task Force Chairpersons:
Ron Moritz ...Computer Associates
Scott Charney...
..Microsoft Corp.

Background
The prevalence of security risks, combined with a lack of accountability for software
vulnerabilities and the absence of effective patch management processes, has saddled institutions
with significant operational risks and increasing costs. In response to these issues, a number of
organizations have initiated efforts to strengthen software security and the patch-management
process. This effort is necessary for several reasons:

• Internet viruses and worms are becoming increasingly virulent, expensive for companies to
react to, and can be disruptive to business operations. For example, Air Canada had to delay
45 flights for more than an hour after its reservation system was impacted by a Nachi
variant5.

• Damages from virus and worm incidents in 2003 are estimated to have cost billions of
dollars. There are severe downstream impacts to conducting business, affecting revenue and
the economy.

o The BITS organization estimates software vulnerabilities cost BITS and Financial
Services Roundtable members $400 million annually and the financial sector in total
more than $1 billion.6

o According to some published reports, computer virus attacks cost global businesses
an estimated $55 billion in damages in 20037

o Aberdeen Group estimates the cost to U.S. businesses to manage security
vulnerabilities was $3.5 billion in 2002 8

• Many of the products used by organizations that compose our critical infrastructure have
required multiple patch releases in the past year. Although at times there is a need for
urgency to apply a patch, the size and complexity of these institutions expand the time
required to remediate the vulnerability, leaving our nation’s critical infrastructure at risk to
exploit from these vulnerabilities in the interim.

• The manpower to test and deploy these patches can cost an individual company millions of
dollars annually.

The goal of this subgroup is to recommend long-term and short-term strategies and actions that
could be employed, by providers of products to the critical infrastructure companies and by the
companies themselves, to enhance the patching process in order to reduce complexity, increase
its effectiveness, improve reliability, and, ultimately, minimize costs and risk. Other subgroups
are focused on various aspects of this issue, such as the software development process and
education. This subgroup is solely focused on identifying recommendations that improve patch
manageability.

Additionally, although the Principles delineated herein could be applied to all software patches,
such as those that address usability or functionality issues, the focus of this document and the

5 Acohido, Byron, Kessler, Michelle, Worm, “Virus Threat Grows”, USA Today, 8/26/2003
6 BITS
7 Tan, Jennifer, “2003 viruses caused $55B damage, antivirus firm says”, Computerworld, 1/16/2004
8Hennendinger, Eric, “ Security Currency: Pragmatic Vulnerability Management”, Perspective, Aberdeen Group,
June 30, 2003

resultant recommendations is limited to those patches that are released to correct security
vulnerabilities.

Although the ultimate goal should be the elimination of patches, complete elimination is highly
improbable even after steps are taken to improve software quality overall. Nevertheless, we
should strive to build development frameworks and methodologies that result in higher quality
software that precludes the need for patches in order to minimize risk to critical infrastructure
providers.

The patch distribution and application process should be considerate of requirements for safe and
secure introduction into the environments of critical infrastructure providers. A complex process
of impact/risk evaluation, patch preparation and testing, and deployment in a large, complex
organization is not a simple endeavor. Each patch must first be tested in the target environment
to ensure compatibility with the underlying hardware and software and to ensure that existing
applications are not compromised, and that the patch itself does not contain errors. Once tested,
the implementation process is complex and may require an extended period of time to apply
because it needs to be replicated across many servers and desktops, yet still needs to be
scheduled and staged to minimize operational impact. Additionally, the failed component may
actually reside in a product that was produced or is supported by a third-party, adding additional
complexity to the testing and application process.

Within this document, the term “technology provider” is a role that can be applied to any
company that provides a product which is used in a component of the critical infrastructure, or
which becomes a critical component of a product or service provided by a critical infrastructure
company. The term “technology consumer” is a role that can be applied to any company that is a
component of our critical infrastructure, for example a telecommunications service provider or a
power utility, or a company that uses technology to provide a product or service that is critical to
the proper functioning of the infrastructure, for example a multinational financial institution
providing trade clearing or payment settlement services. At times, a critical infrastructure
company might be considered a technology provider, as in the case where one financial
institution might outsource some processing to another financial institution or might utilize a
software application provided by another financial institution.

Although there are few recommendations in the February 2003 National Strategy to Secure
Cyberspace that apply directly to patch management, the following recommendations can be
broadly considered as applying to this issue.

A/R 2-7 GSA will work with DHS on an improved approach to implementing a "patch"
clearinghouse for the federal government. DHS will also share lessons learned with the private
sector and encourage the development of a voluntary, industry-led, national effort to develop a
similar clearinghouse for other sectors including large enterprises.

A/R 2-8: The software industry is encouraged to consider promoting more secure “out-of-the-
box” installation and implementation of their products, including increasing: (1) user awareness
of the security features in products; (2) ease-of-use for security functions; and, (3) where
feasible, promotion of industry guidelines and best practices that support such efforts.

A/R 2-14 DHS will facilitate a national public-private effort to promulgate best practices and
methodologies that promote integrity, security, and reliability in software code development,

including processes and procedures that diminish the possibilities of erroneous code, malicious
code, or trap doors that could be introduced during development.

A/R 3-4: Large enterprises are encouraged to evaluate the security of their networks that impact
the security of the Nation’s critical infrastructures. Such evaluations might include: (1)
conducting audits to ensure effectiveness and use of best practices; (2) developing continuity
plans which consider offsite staff and equipment; and, (3) participating in industry-wide
information sharing and best practices dissemination.

A/R 3-7 DHS will implement and encourage the establishment of programs to advance the
training of cybersecurity professionals in the United States, including coordination with NSF,
OPM and NSA to identify ways to leverage the existing Cyber Corps Scholarship for Service
program as well as the various graduate, postdoctoral, senior researcher and faculty development
fellowship and traineeship programs created by the Cyber Security Research and Development
Act, to address these important training and education workforce issues.

A/R 4-4: Additionally, the federal government will be conducting a comprehensive review of the
National Information Assurance Partnership (NIAP), to determine the extent to which it is
adequately addressing the continuing problem of security flaws in commercial software products.
This review will include lessons-learned from implementation of the Defense Department’s July
2002 policy requiring the acquisition of products reviewed under the NIAP or similar evaluation
processes.

Recommendations for Technology Providers

A Technology Provider is a company that builds a platform, application, or component that is
used within the critical infrastructure. When a security vulnerability is identified, the
Technology Provider in whose product the vulnerability resides develops a remedy, typically
taking the form of a software patch, that users of the software must apply. The technology
provider then proceeds to announce the vulnerability and the availability of the patch.
Technology consumers, including critical infrastructure providers, acquire the patch, assess its
relevance to their infrastructure, subject it to some level of testing in a controlled environment,
and either widely or selectively deploy the patch to their internal systems. They may also choose
to defer deployment.

It is not always possible for technology consumers to immediately deploy a patch. It is therefore
helpful in these situations to have available an alternative course of action. Technology providers
should provide, where feasible, alternative actions that can be taken by technology consumers to
mitigate risk associated with the vulnerability. For example, it is sometimes possible to protect
systems from the risk by employing appropriate firewall rules to prevent exploits from
successfully entering the network. It is also important to have all relevant information that
facilitates a more complete understanding of the risks and the risk mitigation process. For
example, the technology provider may be able to provide an estimation of the ease with which
the vulnerability could be exploited and the potential impact to critical infrastructure providers if
an exploit were to result in successful penetration.

Technology consumers are better able to manage patches when the patch is distributed on a
defined release schedule. This allows them to schedule staff time and testing appropriately,
determine when it is most opportune to bring a system down to apply the patch, and schedule the
application of the patch at a time that results in minimal disruption to the business. It is
sometimes necessary, however, for a technology provider to release a patch on an immediate
basis. This could occur, for example, when the technology provider is in possession of
information that leads them to conclude that an exploit is imminent and risk is significant. In
these cases, it is more important to release the patch on an immediate basis rather than delay
distribution until the next scheduled release date.

The following characteristics, incorporated as the Guiding Principles for Technology
Providers define criteria to facilitate patch manageability. The intent behind their inclusion is to
provide a more holistic view of the problem and solution, give technology providers tangible
goals to target, and give critical infrastructure providers a way to measure progress. The
Principles provide criteria for evaluating the manageability of security patches and prescribing
needed improvements.

Limitations:
• Some of the principles are aspirational, and unlikely to be 100% achievable. For

instance, it’s likely that there will always be some small percentage of security patches
that require reboots under some conditions. Completely eliminating reboots, though,
remains the goal.

• There is natural tension between some of the principles. For instance, the practical effect
of Principle II is to reduce patch size, while that of Principle X is to increase it. In cases
like theses, it may be necessary to provide multiple versions of the patch, with each one
satisfying the appropriate principles.

Guiding Principles for Technology Providers:

 I. Patches must be well-tested.
Every security patch must be thoroughly tested to confirm that it eliminates the security
vulnerability without introducing errors, and identify any dependencies on previously
released patches, updates, or maintenance releases. The patch’s associated documentation
must describe the testing that was performed and the results that were obtained, and list all
known dependencies.

 II. Patches must introduce minimal code change.
Patches must include only the changes necessary to eliminate the security vulnerability, and
not include unrelated fixes or introduce new features (unless such features are needed as
part of the security fix.) The patch’s associated documentation must list all of the fixes
included in the patch.

 III. Patches must be small.
To encourage high uptake of patches, especially among users with low-bandwidth
connections, the physical size of security patches must be as small as possible. Patches
must not include superfluous files, and must use technologies like compression and binary
patching to make the needed changes on the system using the fewest number of bytes.

 IV. Patches must be localized.
Security vulnerabilities don’t respect national or language boundaries. Security patches
and their associated documentation must be made available simultaneously in all the
languages that the product itself is available in.

 V. Patches must be reversible.
A user must be able to easily return a system to its status quo ante. Patches must be
uninstallable, and the uninstall process must undo any configuration changes that were
made as part of the patch installation process.

 VI. Patches must not disrupt system availability.
To meet service level agreements, mission-critical systems typically must strictly limit the
downtime associated with system maintenance. Patches must be capable of being installed
during a scheduled maintenance window but taking effect at a later point. Patches also
must not require a reboot to take effect.

 VII. Patches must use consistent registration methods.
All patches must register themselves on the system, in order to allow the operator to
enumerate the patches that have been installed. Moreover, all patches from a particular
technology provider must register themselves in a consistent way, such as using a common
repository and information format.

 VIII. Patches must provide a consistent user experience.
All patches from a particular technology provider must operate consistently. The process
should be automated and user-controlled, uniform, reliable, and consistent in operation. For
instance, they must support a standard set of command-line options and return codes; they
must handle error conditions in similar ways; and they must make consistent use of End
User License Agreements, dialogs, and other user interface elements.

 IX. Patches must support diverse deployment methods.
Different user segments have different preferred methods for deploying patches. To cite

two extremes, a home user might prefer that all patches be installed automatically, where
an enterprise administrator might require fine-grained control over which patches they
install and in what way. Each technology provider must document the suite of deployment
methods it supports, and it must provide patches to support the entire suite.

 X. Patches must make it easy to bring a system up to date.
Operators must frequently do “catch-up patching,” as in the case of setting up a new
system. The operator must not be required to individually install a multitude of patches to
bring a system up to date. Instead, the technology provider must provide cumulative
patches and/or maintenance releases at appropriate intervals to allow it to be updated
quickly.

Recommendations:

It is the recommendation of the Subgroup that the Guiding Principles be adopted as an
industry benchmark, and additional efforts initiated to define specific criteria for the
Principles, and build programs that will encourage technology providers to adhere to them.

Technology providers should develop patch development processes that adhere to the
Guiding Principles.

Technology providers should include for each patch, where feasible, alternative risk
mitigation actions that can be taken by technology consumers in lieu of patch deployment,
and they should provide other relevant information that could facilitate understanding of the
risks and the risk mitigation process to allow technology consumers to make more-informed
patch deployment decisions.

Technology providers should enhance patch and vulnerability technical publications to
include more thorough analyses of the impact of vulnerabilities on unpatched systems, the
process utilized to thoroughly and fully test patches, as well as data on the environments and
applications for which the patches were tested.

DHS should develop and implement an awareness campaign to highlight to technology
providers this issue and how it affects the ability of critical infrastructure companies to
provide secure and reliable services to their customers.

DHS should establish a patch clearing house that provides an inventory of patches, the
platforms they have been evaluated against, and patch compatibility with widely-used
applications.

DHS should examine current industry practices as they relate to provision of patches for
unsupported releases of technology products to gain a better understanding of the risks
associated with usage of unsupported software by technology consumers in order to develop
appropriate guidance on this issue.

Recommendations for Critical Infrastructure
Providers

A Critical Infrastructure Provider is a company that operates part of the critical infrastructure.
Typically, a Critical Infrastructure Provider operates information technology and/or
manufacturing control systems that use Technology Providers’ software. Critical Infrastructure
Providers’ role in the patch management process is to install patches expeditiously and
effectively, in order to maintain the security of their systems. When a Critical Infrastructure
Provider has outsourced business or technology processes to a third-party, it retains
responsibility for ensuring that the patch management process is in place and operational.

Critical infrastructure providers don’t always have a patch management process in place to
manage risk accordingly. The patch management process should include tasks to assess the
criticality of patches, assess the impact of applying or not applying a patch, test patches
appropriately and thoroughly, apply the patch in a controlled manner, and document the patch
assessment and decision process. This deficiency may be because they are unaware of the need
for patches, are not able to implement an effective process for managing patches, or are unable or
unwilling to maintain technology products at current release levels.

The following characteristics, incorporated as the Guiding Principles for Critical
Infrastructure Providers, define criteria to manage patch application.

Limitations:
• Several of the Principles involve balancing competing requirements. For instance,

Guideline IX discusses the adoption of newly released technologies that reduce the
patching burden. Clearly, a Critical Infrastructure Provider must base deployment
decisions such as these on a number of considerations. The intent of the Principles is not
to make security the sole consideration, but to ensure that it is accorded due weight.

Guiding Principles for Critical Infrastructure Providers:

 I. Critical infrastructure providers must have a capability to patch all networked
systems running COTS software.
Critical infrastructure providers often have COTS software running not only on information
technology systems but also on industrial control systems such as DCS (Digital Control
System) and SCADA (Supervisory Control and Data Acquisition) systems. All networked
systems running COTS software, regardless of location, must be patchable.

 II. Critical infrastructure providers must establish documented patch management
policies and procedures.
Every critical infrastructure provider must have a companywide set of policies and
procedures specifying activities such as (but not limited to):
a. Inventorying and valuation of network assets
b. Evaluating the risk posed by newly identified security vulnerabilities
c. Pre-deployment testing of security patches
d. Patch deployment processes for different classes of systems
e. Deployment timelines for patches, based on risk assessment and system value.

 III. Critical infrastructure providers must measure compliance with their policies.
Every critical infrastructure provider must have an active program for gauging and
reporting its compliance with its own patch management policies and procedures. This
program may use auditing, logging, spot-checking or other measures.

 IV. Critical infrastructure providers must designate a corporate sponsor for patch
management.
There must be a defined sponsor for patch management within the company. Either
through direct ownership or delegation, this person must be responsible for, among other
activities: development and maintenance of the patch management policies and procedures;
execution of the procedures; and compliance measurement and enforcement.

 V. Critical infrastructure providers must have a capability to enumerate the patches
installed on systems.
The ability to assess the patch status of selected systems is important for two reasons. It
enables confirmation that a patch deployment was successful. In addition, it facilitates the
enforcement of the company’s network security policies by providing a way to identify
systems that may not have been present on the network when a past patch was installed.

 VI. Critical infrastructure providers’ maintenance procedures must be consistent with
effective patching.
Maintenance procedures, especially for mission-critical systems, must recognize the
potential need to deploy patches. For example, scheduled maintenance periods must be
synchronized with technology providers’ scheduled patch release dates, where possible,
and contingency procedures must be available to handle unscheduled releases.

 VII. Critical infrastructure providers’ network designs must be consistent with the use of
mitigators and workarounds.
In some cases an administrative procedure may be available that will mitigate the risk
posed by a vulnerability even in the absence of a patch. Critical infrastructure providers’
network designs must, to the greatest extent possible, anticipate common mitigators and
allow for their use. For example, anticipating the common guidance to protect mission-
critical systems in lieu of a patch by filtering a particular port, a critical infrastructure
provider might place mission-critical systems on different subnets from non-mission-
critical ones.

 VIII. Critical infrastructure providers must follow an upgrade path that maintains their
ability to patch systems effectively.
All products eventually reach an end-of-life state, after which point patches are no longer
available. Even on products that have not yet reached end-of-life, technology providers
may build patches that rely on recent maintenance releases. Every critical infrastructure
provider must develop and execute an upgrade strategy that migrates to newer versions and
therefore preserves its ability to patch its systems.

 IX. Critical infrastructure providers must, where possible, adopt new technologies that
reduce the patching burden.

Vendors occasionally release security updates that are not responses to coding errors in a
product but instead change its operation to improve its resilience to attack. Likewise,
Technology Providers may release updated tools or technologies that simplify or
streamline patch deployment. Critical Infrastructure Providers must, where appropriate,
deploy such technologies.

 X. Critical infrastructure providers’ mission-critical applications must follow
development practices that reduce the likelihood of compatibility problems with
patches.

One common source of patch compatibility problems is the use of undocumented system
interfaces or reliance on the side effects of system services. Critical Infrastructure
Providers must use only documented, supported services and interfaces in the mission-
critical applications that they develop.

Recommendations:

It is the recommendation of the Subgroup that critical infrastructure providers adopt these
Principles, and additional efforts initiated to define specific criteria for the Principles, and
build programs that will encourage critical infrastructure providers to adhere to them.

Critical infrastructure providers should develop and implement patch management programs
that adhere to the Guiding Principles.

DHS should develop and implement an awareness campaign to highlight to critical
infrastructure companies this issue and how it affects their ability to provide secure services
to their customers as well as the potential risk they pose to the critical infrastructure
components.

DHS should establish guidelines and mechanisms that encourage critical infrastructure
companies to implement a process for patch management, such as that defined in the FDIC
guidelines for financial institutions.

DHS should initiate an effort to examine options available to encourage critical infrastructure
companies to migrate to more current and more secure versions of technology products. This
effort should identify impediments to this process, such as the use of third-party technology
products that contain embedded software that is outdated and incapable of being updated by
the critical infrastructure company, and make recommendations for remediation.

Recommendations for Independent Software
Vendors

Independent software vendors (ISVs) provide products and/or services to Critical Infrastructure
Providers that operate in conjunction with or depend on technology provided by Technology
Providers. The term ISV is used broadly here to refer to providers of application software as well
as providers of technology that is delivered as embedded systems, turnkey systems, and other
hardware devices that contain commercial or special-purpose software that is not accessible to
the end-user and which may not provide to the end-user the capability to patch the underlying software directly.
Examples are process control systems, network appliances, encryption devices, and turnkey
devices such as automated teller machines that are built using commercially-available operating
systems. As new devices become available, end-users are not likely to replace these devices solely to
correct security deficiencies because of the cost involved. The providers of these embedded systems and control
devices need to recognize their ongoing responsibility to support these devices for security purposes on an ongoing
and timely basis.

The critical difference between a Technology Provider and an ISV lies in whose product is being
patched. The same company may, under different circumstances, act in the role of either a
Technology Provider or an ISV. Technology Providers release patches to correct security
vulnerabilities in their own products. In contrast, an ISV does not make the product that requires
the patch, but instead produces one that is dependent on it in some fashion. For example,
consider the case of a company that builds SCADA systems. If it identifies a security
vulnerability in the SCADA system and releases a patch, it is acting in the role of a Technology
Provider. On the other hand, if the maker of the underlying operating system releases a patch,
the SCADA manufacturer’s role is that of an ISV.

Through its actions, an ISV can significantly impede or facilitate Critical Infrastructure
Providers’ patch management processes. ISVs must implement and support their products in a
manner that does not interfere with the ability of the critical infrastructure providers to maintain
the underlying systems in a secure state.

The following characteristics, incorporated as the Guiding Principles for Critical
Infrastructure ISVs define criteria to facilitate the ability of the user of the ISVs product to
manage the patch process and maintain a secure state.

Limitations:
• The Principles involve balancing competing requirements. For instance, Guideline II

discusses the migration of ISVs’ products to newer, more secure platforms. Clearly, an
ISV must base product decisions such as these on a number of considerations. The intent
of the Principles is not to make security the sole consideration, but to ensure that it is
accorded due weight.

Guiding Principles for Critical Infrastructure ISVs:

 I. ISVs’ licenses must be consistent with effective patching.
ISVs must not force their customers to choose between maintaining security and obtaining
support for a product. The licenses for ISVs’ products must allow the operator to install
patches for the operating system (and any other software their products may depend on).

 II. ISVs’ products must not lock customers into expired platforms.
ISVs must be cognizant of the availability of patches for the operating system on which
their products run. Before the operating system (or any other software their products
depend on) reaches end-of-life, the ISV must make available a version that will operate on
a supported platform.

 III. ISVs must test patches for any products theirs depend on.
When a technology provider releases a patch for a product that an ISV’s product depends
on, the ISV must expeditiously test the patch to ensure that it does not interfere with the
correct operation of the ISV’s product.

 IV. Critical infrastructure ISVs must follow development practices that reduce the
likelihood of compatibility problems with patches.
One common source of patch compatibility problems is the use of undocumented system
interfaces or reliance on the side effects of system services. ISVs’ products must use only
documented, supported services and interfaces.

Recommendations:

It is the recommendation of the Subgroup that these Principles be adopted by ISVs, and
additional efforts initiated to define specific criteria for the Principles, and build programs
that will encourage critical infrastructure providers to adhere to them.

ISVs should develop and implement patch management processes that adhere to the Guiding
Principles.

DHS should develop and implement an awareness campaign to highlight to ISVs this issue
and how it affects their customers’ ability to provide secure services as well as the potential
risk they pose to the critical infrastructure components.

DHS should initiate an effort to examine options available to encourage ISVs to migrate their
products to more current and more secure versions of technology products.

D-1

Appendix D
Incentives Subgroup Report

Incentives Subgroup Report

Incentives will play an important role in supporting the effort to make cyberspace more
secure. The Incentives Sub Group of the Software Development Life Cycle of the
National Cyber Security Summit has focused on identifying incentives that:

Motivate development of more secure software during every phase of software
development

Promote effective interaction between security researchers and software vendors

Demotivate malicious behavior by cyber criminals

To be successful in our efforts to improve the security of cyber space, we must educate
each person in the software industry about the direct impact they have on our collective
security. Proper incentives can help to develop ownership of the problem at both a
personal and corporate level.

The Incentives Sub Group has identified tangible incentives that will impact all aspects
of the software development lifecycle, from Development, to Deployment, and
Maintenance. We also recommend Incentives for Security Researchers and
Disincentives for Cyber Criminals. While some of our recommendations will take time to
implement, several of our recommendations can be implemented in the short term and
have an immediate impact on overall cyber security.

The overall result of our work is presented in an ‘Incentives Framework’ that enables
policymakers, developers, companies and others to develop effective strategies and
incentives for making software more secure. Incorporated below are the components of
the Incentives Framework that we believe can be implemented in the relative short term
(within the next year). Additional incentives have been considered and are included
below as areas warranting further discussion.

INCENTIVES FOR INDIVIDUAL SOFTWARE DEVELOPERS
Proposal Description and

Goal
Actor Metrics

Make the security of
one's software a job
performance factor

Software companies
and companies in
CIP sectors would
publicly commit to
including the security
of developed code as
a factor in personnel
evaluations for
developers.

Software
development
companies

Number of software
or CIP companies
that make such
commitments
Percent of software
or CIP sector that
make such
commitment

INCENTIVES FOR SOFTWARE DEVELOPMENT
ORGANIZATIONS
Proposal Description and

Goal
Actor Metrics

Develop industry awards
for secure software
development practices
and end products.

Make security of
code something
worth striving for.
Create an award that
becomes a strong
motivating factor for
software developers
to focus on security
(Baldridge Award
concept).

An appropriate trade
association. Should
have multi-national
breadth.

Creation of an award
program by Q1 ‘05

Create and actively
distribute tools that
illustrate secure software
development techniques.

Accelerate the
adoption and lower
the cost of
implementing good
software security
practices by making
educational
materials, success
stories, etc. freely
accessible.

DHS in conjunction
with academia

Initial materials
distributed by
September 2004.
Ongoing monitoring
to validate
usefulness of
materials.

DHS/NCSD should
examine whether tailored
government action is
necessary to increase
security across the
software development
lifecycle

Market forces and
business needs are
improving security
across the software
development
lifecycle. This report
offers many
additional incentives.
However, it is
possible that national
security or critical
infrastructure
protection may
require a greater
level of security than
the market will
provide. Any such
gap should be filled
by appropriate and

DHS/NCSD with
industry input

Production of a DHS
report in FY 05

tailored government
action that interferes
with market
innovation on security
as little as possible.
Accordingly,
DHS/NCSD should
work with industry to
explore whether a
national
security/critical
infrastructure
protection gap will
exist in the future and
how best to fill that
gap, examining such
options as liability
and liability relief,
regulation and
regulatory reform, tax
incentives, enhanced
prosecution, research
and development,
education, and other
incentives proposed
in this report.

INCENTIVES FOR CORPORATIONS (MAINTENANCE PHASE)
Proposal Description and

Goal
Actor Metrics

Develop sample
performance metrics for
administrators/IT
Departments that
encourage effective
action

Help companies to
keep their systems
secure by developing
performance metrics
that can be used for
system
administrators and IT
departments in
evaluations.
Appropriate metrics,
if adopted, would
encourage IT
departments to focus
on security along with
other business
needs.

An appropriate trade
association

Creation of such
metrics by the end of
2004

DISINCENTIVES FOR CYBER CRIMINALS

Proposal Description and
Goal

Actor Metrics

Develop a multi-company
program offering rewards
for information leading to
the conviction of cyber
criminals

It can be very difficult
to catch people who
break into and attack
systems and
networks. A
multicompany

An appropriate trade
association, in
coordination with law
enforcement

Creation of such a
program, funded by
companies, by
August, 2004

rewards program for
information leading
the arrest and
conviction of persons
whose criminal
actions threaten the
Internet or other
critical infrastructures
would provide a
deterrent to criminal
activity.

INCENTIVES FOR SOFTWARE DEVELOPMENT
ORGANIZATIONS
Proposal Description and

Goal
Actor Metrics

Track and measure, and
then certify, effective
development processes

Track and assess the
secure development
and measurement
processes used by
software developers,
and certify those
processes and
methods found to be
highly effective at
producing secure
software products.

NIST with industry
support

Establish an initial
operating capability
in FY05 with full
funding in FY06

INCENTIVES FOR ACADEMICS AND EDUCATION

Proposal Description and
Goal

Actor Metrics

Create a program with
government and industry
support for Information
Assurance/Computer
Security faculty that
provides a grant or
reward for innovative
educators in applicable
fields for a fixed period of
time.

Build expertise in
security across the
software
development lifecycle
through creation of a
program similar to the
NSF CAREER award
– a competitive,
prestigious program
for faculty that
provides a grant or
reward to innovative
educators and
researchers in
particular fields, such
as secure software
development, for a
fixed period of time

DHS with industry
contributions and
support

Inclusion of funding
for such a program in
the FY06 budget,
with appropriate
contributions by
industry

Create a National IT
Security Certification
Accreditation Program.

Establish an
accreditation program
– develop an
industry-led body
responsible for

This effort should be
industry-led and
facilitated by DHS

Creation of such a
program by the end
of 2004

setting core
knowledge and skills
standards for IT
security professionals
through a certification
accreditation
process. The
certification
accreditation program
should identify and
establish a minimum
level of knowledge
and skills for a given
level of job
responsibilities, and
the process should
provide employers
with a degree of
reliability for job
performance for
professionals with IT
security
responsibilities.

Additional Incentives Warranting Further Exploration

The Incentives Subgroup has discussed numerous additional Incentives and
programs, which may have positive impacts on improving cyber security and
motivating productive, positive behaviors and reducing the benefit of negative
behaviors. Some of those possible Incentives, which we believe warrant additional
exploration, are listed below. At this time, these are not recommendations of this
Subgroup.

• Explore ways we can help raise awareness globally that computer viruses,
worms and denial of service attacks are not clever acts of mischief, but serious
crimes that can cause major economic damage. More specifically, the U.S
Government can work with our trading partners to expand the list of countries
that have made cyber security attacks a crime. For example, just last year
Congress passed the Cyber Security Enhancement Act, which increased the
criminal penalties for people who launch attacks on computer networks.

• Develop recommendations, which help ensure that law enforcement everywhere
has the resources it needs -personnel, training, and equipment - so that
governments can access to the same cutting-edge technologies that cyber
criminals use, and have the ability to coordinate and investigate and enforce
cyber crime laws.

• Promote greater cross-jurisdictional international cooperation in investigating
cyber attacks. Cyber security is inherently an international issue that requires
international solutions. Many of the most recent cyber attacks were international
in scope. Continued collaboration, information sharing, and tough laws in every
country criminalizing cyber attacks are vital to ensuring that law enforcement can
help prevent crime and investigate cyber criminals.

• Recommend US and international ratification of the Council of Europe
Cybercrime Convention.

• Consider recommendations, which would serve to ameliorate the potential
negative effect of DMCA on positive actions by security researchers.

• Identify ways to motivate industry to use direct rewards for security
improvements when developing systems. For example, embedded systems
software developers have been rewarded for speed or space improvements.
Extend the concept to security.

• Develop a methodology to estimate of the probability of a certain kind of security
violation, along the lines of insurance assessment, in order to begin to build
software security ‘actuarial tables’ to assist in risk assessment. Support
regulatory/liability/insurance relief for securely maintained systems.

E-1

Appendix E
Recommendations for Future Consideration

RECOMMENDATOINS FOR FUTURE CONSIDERATION

The task force intends to continue working on ways to implement the national
strategy and improve software security throughout the software development
lifecycle. The task force has discussed numerous additional initiatives,
recommendations, and programs. While the task force was unable to reach
consensus on the items listed below, some of those items may warrant additional
exploration. At this time, these recommendations are not recommendations of this
task force. These could be areas where the task force may choose to devote
additional resources in order to explore the relative merits of the proposal, further
develop the proposal and recommend it at a later fate, or dismiss the proposal
entirely.

Education Subgroup

1. Fund long-term fellowships in universities to support their research and
educational efforts.

These positions should be at the associate or full professor level and should be
provided only to qualified individuals with substantial industry expertise, adequate
publications and academic credentials to meet the criteria for such a position, and a
track record of research and education in information protection. The funding and
qualifications should be designed to assure that high quality mid-career and late-
career individuals can spend the rest of their careers working on these issues and to
assure that they have adequate funding to support both a rigorous ongoing research
program and a strong teaching and graduate education component. The professors
must either be tenured or the Universities must commit to tenure the faculty in this
program who come from non-academic institutions to participate for the rest of their
career in these roles.

This funding should be tied to performance so that it cannot be shifted into other
areas, and it should be given to individuals who have a career-long commitment in
this area. These professors should be required to teach classes at the undergraduate
and graduate level as well to sustain a defined number of graduate students at the
masters and Ph.D. level. Funding levels for each professor in such a program need to
be on the order of $1M per year for salaries, research and graduate student support,
and support of education for other educators. This will also support collaboration
between the funded professors, which will be leveraged for curriculum development,
cooperative research, cooperative education, and eventually accreditation. These
fellowships should run for periods of at least 4 years, with renewals over time to
continue the long-term funding profile and to provide stability for the creation and
enhancement of the program,

Fellows under this program will be dedicated to the work of this program as their
major source of funding and their major area of effort. It is expected that Fellows
will personally perform much of the research with graduate student assistance and
they will forgo other funding totaling more than $250,000 while engaged in this
program, with that funding required to be closely related to the work funded under
this program. DHS and industry associations should support the aggregation of

corporate funding so that individual corporation wishing to join the program can fund
at levels they can afford while professors in the program are still able to carry out the
responsibilities of the program at the levels of performance expected of them.

2. Create a program to educate educators in intensive sessions:

The same professors who are funded under part 1 of this recommendation and who
help to develop tools for Internet-based education under part 2 of this
recommendation, will support summer education of educators from junior colleges,
community colleges, and other undergraduate institutions so that these educators will
have the knowledge necessary to infuse information protection into their courses and
to teach specialty courses in these areas to their students. Over time this will produce
a national momentum and change the undergraduate curriculum to bring information
protection into line with other elements taught to those learning about how to write
software. This program should provide funding for professors from all over the
country to come to the funded institutions for intensive summer programs two years
in a row. During these programs, these professors will participate in research, attend
graduate programs with other graduate students from those institutions, participate in
education of undergraduate and other students, and gain access to teaching materials
developed under this program along with the knowledge required to effectively use
them. While there are some existing programs that provide limited support in this
arena, they are too few and too small and do not focus on the issues indicated here or
create the overall program needed to meet the national need

3. Create, over time, the requirement that people working on critical systems
have earned degrees from accredited programs.

Just as professional engineers require licensing at the state level, licenses should be
required for software developers who produce software that supports critical
infrastructures. This licensing process should be created once accreditation processes
are in place and should require a combination of testing and a degree from an
accredited institution. For this to work, accredited institutions are required in each
state, or alternatively, a national level certification could be defined. This is a long-
term objective that will only be met after adequate capacity is build to sustain a
national program similar to the professional engineers programs that exist from state
to state.

4. Fund students and educators to participate.

In addition to the normal students who participate in educational programs, special
support is required for educators who are trying to learn the subject matter so as to
teach it to their students and students from industry who are in service and seeking
career advancement through added skills. Industry contributors should receive
discounts for students from their organizations entering the program and should
provide release time to those students for the time they spend in improving their
knowledge and skills in this area.

Salary and tuition support should also be provided for educators wishing to
participate in the summer programs. The current level of funding from NSF in this
area is inadequate to meet the goals stated here and should be augmented to fund
participants in this program.

Software Process Subgroup
5. No single measure is the ultimate predictive measure of software product security.

Predictive measures should be based on a combination of environment, resources,
process, and product characteristics. Organizations with suitable data should work
with USCERT or other entity such as IT-ISAC to determine useful surrogate
measures for the number of security vulnerabilities subsequently found in that
product.

6. As new practices emerge, they should be evaluated, and if effective, should be
incorporated in the process. Those organizations that have software products with a
significant annual volume of vulnerability discoveries should conduct measured tests
of those security practices deemed to be immediately useful or highly promising.

7. As discussed in the Practices section, code signing and code-based authorization are
promising techniques for promoting accountability. Further research is needed to
determine their effectiveness. Therefore, the DHS should work with selected
software producers to conduct experiments with developer code signing using
developers’ private keys during their development and maintenance processes. The
goal is to produce measurable and verifiable results about the effectiveness of code
signing in reducing malicious code and in promoting accountability.

Patch Management Subgroup
8. Technology providers should group and release patches on a scheduled basis to

facilitate deployment by critical infrastructure providers, but they should not delay
notification and release of a particular patch if they have reason to believe there is a
critical and urgent need to release the patch off-cycle.

Incentives Subgroup
9. Create a standardized system for rating vulnerabilities so that enterprises

and end users are able better to prioritize patch installation across
multiple software platforms and vendors.

Description: One reason why companies do not patch is because there is not a
rigorous way to evaluate which patch ought to be priority one for their network,
which should be priority two, etc. Accordingly, a standardized system for rating the
severity of vulnerabilities would be developed. This would serve to simplify the
patch management decision process, yielding more secure systems across the
industry.

Actor: Possibilities include the NIAC or other group

Metrics: Creation of a consensus system by the end of 2004

10. Motivate more effective and responsible disclosure of security
vulnerabilities by adopting as an industry the OIS guidelines for
interactions between a security researcher who identifies a vulnerability
and the relevant software vendor.

Description: OIS has drafted a set of voluntary guidelines for behavior that promotes
greater cooperation, predictability and accountability than is generally extant today.
Broad adoption of these guidelines would lead to more effective interactions and
result in more rapid and effective response to identified vulnerabilities.

Actor: Security researchers and software vendors

Metrics: Widespread adoption of the OIS guidelines over the next several months.
Success will have been achieved if a commitment to the guidelines becomes a criteria
for vendor selection in the marketplace.

11. Encourage finders of vulnerabilities to communicate vulnerabilities to
software vendors by developing a secure anonymous communication
system which can be utilized by researchers to interact in good faith with
software vendors. Such a system would enable private communication
between finders and vendors and reduce any legal or publicity risk
perceived by the finder.

Description: Security researchers, especially if they are individuals doing pro-bono
research, sometimes would be more comfortable interacting anonymously with the
software vendor. The ability to work with the vendor under the OIS guidelines, but
without divulging one’s identity (and therefore risking threats of legal action) would
serve to increase the receptivity of security researchers to doing pro bono research.

Actor: A respected, independent, non-government organization with input from key
independent security researchers.

Metrics: Establishment of an anonymous method of communication by September
2004.

